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1 Introduction

Many of the most successful quantum algorithms are designed around symmetries, for which

group representation theory provides the mathematical foundation. These algorithms tradition-

ally have achieved their speedups with the quantum Fourier transform (QFT), but this is not the

only method known to exploit group symmetries. One concept which has been productive in

mathematics, chemistry, physics, and recently quantum information theory, is known as Schur (or

Schur-Weyl) duality. Early in this project we gave an efficient quantum circuit, which we call the

Schur transform by analogy to the QFT, for transforming quantum data between two different

forms: the standard computational basis and the Schur basis. This allows quantum computers

to efficently compute using the Schur symmetries of quantum information. While this already

has applications to quantum communication, one of our main goals is to find algorithmic uses of

the transform. We are also looking at ways of using Schur symmetry in a purely mathematical

sense to construct quantum algorithms, so that Schur duality would be used in the analysis of the

algorithm but its implementation would not explicitly use the Schur transform.

We report the following major accomplishments over the span of this project timeline, from

09/01/05 to 08/31/08:

• Efficient circuit for the Schur transform devised – Phys. Rev. Lett., vol. 97, pp. 170502, 2006.

• Qudit version of Schur transform devised – Proc. 18th ACM-SIAM Symposium on Discrete

Algorithms (SODA), pp. 1235–1244, 2007.

• Schur transform applied to hidden subgroup problem – Proc. 24th Symposium on Theoretical

Aspects of Computer Science (STACS 2007), Lecture Notes in Computer Science 4393, pp. 598–

609, 2007.

• Quantum expanders developed – Q. Inf. Comp., vol. 8, no. 8/9, pp. 715-721, 2008. [arXiv:0709.1142]

• Analysis of random quantum circuits – Comm. Math. Phys. vol. 291, no. 1, pp. 257–302, 2009.

[arXiv:0802.1919]

• Study of tensor product expanders – Q. Inf. Comp. vol. 9, pp. 336–360, 2009. [arXiv:0804.0011]
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• New quantum algorithm for superpolynomial speedups based on quantum circuits – Proc.

of the 35th International Colloquium on Automata, Languages and Programming (ICALP 2008),

LNCS 5125, pp. 782–795, 2008. [arXiv:0805.0007]

Major publications detailing these results, specifically including those cited here, appear in the

appendix of this report.

2 Project motivation and summary of scientific results

The main goal of this project was to develop new quantum algorithms, based on the application

of the Schur transform, as a new building block, different from the quantum Fourier transform.

We analyzed a natural strategy for using the Schur transform to solve the hidden subgroup

problem (HSP; a common framework for quantum speedups), and found that it failed to give an

exponential speedup. Along the way, we gave upper and lower bounds on the complexity of the

quantum collision problem, which are tight for oracle complexity and nearly tight for time com-

plexity. (Here we mean a quantum generalization of the classical collision problem from cryptog-

raphy, in which we want to distinguish a uniform distribution on an unknown N elements from

one on an unknown 2N elements.) This work was published in STACS.

We also looked beyond the HSP for problems where quantum computers can exhibit exponen-

tial, or at least superpolynomial, speedups over classical computers. Initially, we found a problem

which cannot be solved on a classical computer in polynomial time, but which can be solved quan-

tumly using the QFT over the symmetric group, which is closely related to the Schur transform,

and for which no previous application was known. By generalizing our construction, we found

that these sorts of speedups can in fact be obtained from any efficiently implementable QFT (i.e.

over any finite group), or even from most random circuits that are sufficiently long. On the one

hand, this shows that the group symmetry was less important than many people initially believed.

On the other, it means we have constructed a large class of superpolynomial quantum speedups

which look radically unlike the speedups based on the HSP.

One of the building blocks of the Schur transform was a quantum Clebsch-Gordan transform

2



for the unitary group. If this could be generalized to a quantum Fourier transform on the unitary

group, it could have many applications to dealing with unitary symmetries on quantum comput-

ers. However, we have not yet been successful at turning classical circuits for the unitary group

Fourier transform4 into quantum circuits for the unitary group QFT. The difficulty is that, un-

like simpler Fourier transforms, the unitary group Fourier transform involves intermediate steps

which, if implemented on a quantum computer, would not preserve the overall normalization of

the state. Thus, these transformations would either be physically impossible, or would have an

unacceptably high failure rate. This only means that our first approach failed, however, and not

that an efficient quantum algorithm is ruled out. We are currently investigating other ways to

approach the problem, mostly involving technical changes in how the data is represented, as well

as examining different recursive decompositions of the Legendre transform that is at the heart of

the problem.

While we have not yet constructed an efficient QFT over the unitary group, we have found one

important application that would be made possible by such a QFT. Classically, expander graphs

are an extremely useful algorithm tool, with applications in error-correcting codes, network de-

sign, probabilistically checkable proofs, pseudorandomness, cryptographic hash functions, and

other fields. Only recently, a definition of a quantum expander was proposed, and applications

were given to cryptography5 and to condensed matter physics6. However, no efficient implemen-

tations of quantum expanders are currently known. We found a method to implement a quantum

expander that would be efficient if rotations in high-dimensional irreps of SU(2) could be effi-

ciently simulated on a quantum computer. This task would in turn be efficiently implementable

if a QFT over SU(2) could be efficiently carried out on a quantum computer. On the other hand,

a direct implementation of rotations in SU(2) irreps was claimed. The method there turns out to

be missing some crucial steps, which we have worked to fill in. Doing so gives the only known

efficient construction of a quantum expander.

Finally, we also investigated Clebsch-Gordan transforms over groups other than the unitary

group, and have constructed explicit efficient circuits for the dihedral and Heisenberg group. Cas-

cading them will allow the construction of circuits that are analogous to the Schur transform, but

3



with the dihedral or Heisenberg group in place of the unitary group. We have investigated vari-

ants of the HSP for which these circuits might be useful.

Our work on superpolynomial speedups also led us to investigate the properties of short ran-

dom quantum circuits (a.k.a. pseudorandom unitaries), and the extent to which they approximate

the behavior of fully random unitary matrices. The superpolynomial speedup mentioned above

can be obtained by analyzing the second moment of a family of pseudorandom unitaries (inspired

by the techniques in 8), but we expect better constructions and additional applications (efficient

methods of randomizing quantum states, or of constructing unknown quantum states from ora-

cles) to arise from studying their higher moments. Ideally, the results would be analogous to the

classical case, where polynomial-size random circuits approximate random functions to all orders

(in other words, achieving nearly t-wise independence, for any t) as the circuit size increases. For

this project, the quantum circuits that are constructed would not explicitly use the Schur trans-

form; instead it is our analysis of the circuit that makes use of Schur duality.

3 List of manuscripts submitted/appearing in print

• Papers in Refereed Journals and Conferences:

1. D.A.Bacon, I.L. Chuang, A.W. Harrow. “Efficient Quantum Circuits for Schur and

Clebsch-Gordan Transforms.” Phys. Rev. Lett., vol. 97, pp. 170502, 2006.

2. D.A.Bacon, I.L. Chuang and A.W. Harrow. “The Quantum Schur Transform: I. Efficient

Qudit Circuits.” Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.

1235–1244, 2007.

3. A.M. Childs, A.W. Harrow and P. Wocjan. “Weak Fourier-Schur sampling, the hidden

subgroup problem, and the quantum collision problem,” Proc. 24th Symposium on The-

oretical Aspects of Computer Science (STACS 2007), Lecture Notes in Computer Science

4393, pp. 598–609, 2007.

4. A.W. Harrow. “Quantum expanders from any classical Cayley graph expander.” Q. Inf.

Comp., vol. 8, no. 8/9, pp. 715-721, 2008. [arXiv:0709.1142]
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5. A.W. Harrow and R.A. Low. “Random Quantum Circuits are Approximate 2-designs”

Comm. Math. Phys. vol. 291, no. 1, pp. 257–302, 2009. [arXiv:0802.1919]

6. M. B. Hastings and A. W. Harrow. “Classical and Quantum Tensor Product Expanders.”

Q. Inf. Comp. vol. 9, pp. 336–360, 2009. [arXiv:0804.0011]

7. S. Hallgren and A.W. Harrow. “Superpolynomial speedups based on almost any quan-

tum circuit.” Proc. of the 35th International Colloquium on Automata, Languages and Pro-

gramming (ICALP 2008), LNCS 5125, pp. 782–795, 2008. [arXiv:0805.0007]
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8. Richard Low, Ph.D. Thesis, University of Bristol, Department of Computer Science,
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Abstract: Given a universal gate set on two qubits, it is well known that applying
random gates from the set to random pairs of qubits will eventually yield an approxi-
mately Haar-distributed unitary. However, this requires exponential time. We show that
random circuits of only polynomial length will approximate the first and second moments
of the Haar distribution, thus forming approximate 1- and 2-designs. Previous construc-
tions required longer circuits and worked only for specific gate sets. As a corollary of
our main result, we also improve previous bounds on the convergence rate of random
walks on the Clifford group.

1. Introduction: Pseudo-Random Quantum Circuits

There are many examples of algorithms that make use of random states or unitary
operators (e.g. [5,28]). However, exactly sampling from the uniform Haar distribution
is inefficient. In many cases, though, only pseudo-random operators are required. To
quantify the extent to which the pseudo-random operators behave like the uniform dis-
tribution, we use the notion of k-designs (often referred to as t-designs). A k-design has
kth moments equal to those of the Haar distribution. For most uses of random states or
unitaries, this is sufficient. Constructions of exact k-designs on states are known (see [3]
and references therein) and some are efficient. Ambainis and Emerson [3] introduced
the notion of approximate state k-designs, which can be implemented efficiently for
any k. However, the known constructions of unitary k-designs are inefficient to imple-
ment. Approximate unitary 2-designs have been considered [10,14,18], although the
approaches are specific to 2-designs.

We consider a general class of random circuits where a series of two-qubit gates are
chosen from a universal gate set. We give a framework for analysing the kth moments
of these circuits. Our conjecture, based on an analogous classical result [23], is that a
random circuit on n qubits of length poly(n, k) is an approximate k-design. While we
do not prove this, we instead give a tight analysis of the k = 2 case. We find that in a
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Fig. 1. An example of a random circuit. Different lines indicate a different gate is applied at each step

broad class of natural random circuit models (described in Sect. 1.1), a circuit of length
O(n(n + log 1/ε)) yields an ε-approximate 2-design. Our definition of an approximate
k-design is in Sect. 2.2. Our results also apply to an alternative definition of an approxi-
mate 2-design from [10], for which we show random circuits of length O(n(n+log 1/ε))
yield ε-approximations, thus extending the results of that paper to a larger class of cir-
cuits. Moreover, our results also apply to random stabiliser circuits, meaning that a
random stabiliser circuit of length O(n(n +log 1/ε))will be an ε-approximate 2-design.
This both simplifies the construction and tightens the efficiency of the approach of [14],
which constructed ε-approximate 2-designs in time O(n6(n2 + log 1/ε)) using O(n3)

elementary quantum gates.

1.1. Random Circuits. The random circuit we will use is the following. Choose a 2-qubit
gate set that is universal on U (4) (or on the stabiliser subgroup of U (4)). One example
of this is the set of all one qubit gates together with the controlled-NOT gate. Another
is simply the set of all of U (4). Then, at each step, choose a random pair of qubits and
apply a gate from the universal set chosen uniformly at random. For the U (4) case, the
distribution will be the Haar measure on U (4). One such circuit is shown in Fig. 1 for
n = 4 qubits. This is based on the approach used in Refs. [9,26] but our analysis is both
simpler and more general.

Since the universal set can generate the whole of U (2n) in this way, such random
circuits can produce any unitary. Further, since this process converges to a unitarily
invariant distribution and the Haar distribution is unique, the resulting unitary must be
uniformly distributed amongst all unitaries [15]. Therefore this process will eventually
converge to a Haar distributed unitary from U (2n). This is proven rigourously in Lemma
3.2. However, a generic element of U (2n) has 4n real parameters, and thus to even have
�(4−n) fidelity with the Haar distribution requires�(4n) 2-qubit unitaries. We address
this problem by considering only the lower-order moments of the distribution and show-
ing these are nearly the same for random circuits as for Haar-distributed unitaries. This
claim is formally described in Theorem 2.2.

Our paper is organised as follows. In Sect. 2 we define unitary k-designs and explain
how a random circuit could be used to construct a k-design. In Sect. 3 we work out how
the state evolves after a single step of the random circuit. We then extend this to multiple
steps in Sect. 4 and prove our general convergence results. A key simplification will be
(following [26]) to map the evolution of the second moments of the quantum circuit onto
a classical Markov chain. We then prove a tight convergence result for the case where
the gates are chosen from U (4) in Sect. 5. This section contains most of the technical
content of the paper. Using our bounds on mixing time we put together the proof that
random circuits yield approximate unitary 2-designs in Sect. 6. Section 7 concludes with
some discussion of applications.
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2. Preliminaries

2.1. Pauli expansion. Much of the following will be done in the Pauli basis. The Pauli
operators will be taken as {σ0, σ1, σ2, σ3} and defined to be

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

If |ψ〉 ∈ C2n
is a state on n qubits then we write ψ = |ψ〉〈ψ |. We can expand ψ in the

Pauli basis as

ψ = 2−n/2
∑

p

γ (p)σp, (2.1)

where σp = σp1 ⊗ . . . ⊗ σpn for the string p = p1 · · · pn . Inverting, the coefficients
γ (p) are given by

γ (p) = 2−n/2tr σpψ. (2.2)

It is easy to show that the coefficients γ (p) are real and, with the chosen normalisation,
the squares sum to trψ2, which is 1 for pure ψ . In general

∑

p

γ 2(p) ≤ 1

with equality if and only if ψ is pure. Note also that trψ = 1 is equivalent to γ (0) =
2−n/2.

This notation is extended to states on nk qubits by treating γ as a function of k strings
from {0, 1, 2, 3}n . Thus a state ρ on nk qubits is written as

ρ = 2−nk/2
∑

p1,...,pk

γ0(p1, · · · , pk)σp1 ⊗ . . .⊗ σpk . (2.3)

2.2. k-designs. We will say that a k-design is efficient if the effort required to sample
a state or unitary from the design is polynomial in n and k. Note that we do not require
the number of states to be polynomial because, even for approximate unitary designs, an
exponential number of unitaries is required. Rather, the number of random bits needed
to specify an element of the design should be poly(n, k).

2.2.1. State designs A (state) k-design is an ensemble of states such that, when one state
is chosen from the ensemble and copied k times, it is indistinguishable from a uniformly
random state. This is a way of quantifying the pseudo-randomness of the state and is
a quantum analogue of k-wise independence. Hayashi et al. [20] give an inefficient
construction of k-designs for any n and k.

The state k-design definition we use is due to Ref. [3]:

Definition 2.1. An ensemble of quantum states {pi , |ψi 〉} is a state k-design if

∑

i

pi (|ψi 〉〈ψi |)⊗k =
∫

ψ

(|ψ〉〈ψ |)⊗k dψ, (2.4)

where the integration is taken over the left invariant Haar measure on the unit sphere
in Cd , normalised so that

∫
ψ

dψ = 1.
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It is well known that the above integral is equal to �+k

(k+d−1
k )

, where�+k is the projector onto

the symmetric subspace of k d-dimensional spaces. For a rigourous proof, see Ref. [16]
and for a less precise proof, but from a quantum information perspective, see Ref. [7].

2.2.2. Unitary designs A unitary k-design is, in a sense, a stronger version of a state
design. Just as applying a Haar-random unitary to an arbitrary pure state results in a
uniformly random pure state, applying a unitary chosen from a unitary k-design to an
arbitrary pure state should result in a state k-design. Another way to say this is that the
state obtained by acting U⊗k , where U is drawn from a unitary k-design on U (d), on
any dk-dimensional state should be indistinguishable from the case where U is drawn
uniformly from U (d). Formally, we have:

Definition 2.2. Let {pi ,Ui } be an ensemble of unitary operators. Define

GW (ρ) =
∑

i

piU
⊗k
i ρ(U †

i )
⊗k (2.5)

and

GH (ρ) =
∫

U
U⊗kρ(U †)⊗kdU. (2.6)

Then the ensemble is a unitary k-design iff GW = GH .

Unitary designs can also be defined in terms of polynomials, so that if p is a polynomial
with degree k in the matrix elements of U and k in the matrix elements of U∗, then aver-
aging p over a unitary k-design should give the same answer as averaging over the Haar
measure. To see the equivalence with Definition 2.2 note that averaging a monomial over
our ensemble can be expressed as 〈i1, . . . , ik |GW (| j1, . . . , jk〉〈 j ′1, . . . , j ′k |)|i ′1, . . . , i ′k〉,
and so if GW = GH then any polynomial of degree k will have the same expectation
over both distributions.

2.3. Approximate k-designs.

2.3.1. Approximate state designs Numerous examples of exact efficient state 2-design
constructions are known (e.g. [8]) but general exact constructions are not efficient in n
and k. Approximate state designs were first introduced by Ambainis and Emerson [3]
and they constructed efficient approximate state k-designs for any k. Aaronson [1] also
gives an efficient approximate construction.

We define approximate state designs as follows.

Definition 2.3. An ensemble of quantum states {pi , |ψi 〉} is an ε-approximate state
k-design if

(1 − ε)

∫

ψ

(|ψ〉〈ψ |)⊗k dψ ≤
∑

i

pi (|ψi 〉〈ψi |)⊗k ≤ (1 + ε)
∫

ψ

(|ψ〉〈ψ |)⊗k dψ. (2.7)
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In [3], a similar definition was proposed but with the additional requirement that the
ensemble also forms a 1-design (exactly), i.e.

∑

i

pi |ψi 〉〈ψi | =
∫

ψ

|ψ〉〈ψ |dψ.

This requirement was necessary there only so that a suitably normalised version of the
ensemble would form a POVM. We will not use it.

By taking the partial trace one can show that a k-design is a k′-design for k′ ≤ k.
Thus approximate k-designs are always at least approximate 1-designs.

2.3.2. Approximate unitary designs It was shown in Ref. [4] that a quantum analogue
of a one time pad requires 2n bits to exactly randomise an n qubit state. However, in
Ref. [5] it was shown that n + o(n) bits suffice to do this approximately. Translated into
k-design language, this says an exact unitary 1-design requires 22n unitaries but can be
done approximately with 2n+o(n). So approximate designs can have fewer unitaries than
exact designs. Here, we are interested in improving the efficiency of implementing the
unitaries. There are no known efficient exact constructions of unitary k-designs; it is
hoped that our approach will yield approximate unitary designs efficiently.

We will require approximate unitary k-designs to be close in the diamond norm [24]:

Definition 2.4. The diamond norm of a superoperator T ,

||T ||� = sup
d

||T ⊗ idd ||∞ = sup
d

sup
X 
=0

||(T ⊗ idd)X ||1
||X ||1 ,

where idd is the identity channel on d dimensions.

Operationally, the diamond norm of the difference between two quantum operations tells
us the largest possible probability of distinguishing the two operations if we are allowed
to have them act on part of an arbitrary, possibly entangled, state. In the supremum over
ancilla dimension d, it can be shown that d never needs to be larger than the dimension of
the system that T acts upon. The diamond norm is closely related to completely bounded
norms (cb-norms), in that ||T ||� is the cb-norm of T † and can also be interpreted as the
L1 → L1 cb-norm of T itself [11,27].

We can now define approximate unitary k-designs.

Definition 2.5. GW is an ε-approximate unitary k-design if

||GW − GH ||� ≤ ε, (2.8)

where GW and GH are defined in Definition 2.2.

In Ref. [10], they consider approximate twirling, which is implemented using an approxi-
mate 2-design. They give an alternative definition of closeness which is more convenient
for this application:

Definition 2.6 ([10]). Let {pi ,Ui } be an ensemble of unitary operators. Then this ensem-
ble is an ε-approximate twirl if

max
�

∣∣∣
∣∣∣EW W (�(W †ρW ))W † − EU U (�(U †ρU ))U †

∣∣∣
∣∣∣� ≤ ε

d2 , (2.9)

where the first expectation is over W chosen from the ensemble and the second is the
Haar average. The maximisation is over channels � and d is the dimension (2n in our
case).

Our results work for both definitions with the same efficiency.
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2.4. Random Circuits as k-designs. If a random circuit is to be an approximate k-design
then Eq. 2.8 must be satisfied where the Ui are the different possible random circuits.
We can think of this as applying the random circuit not once but k times to k different
systems.

Suppose that applying t random gates yields the random circuit W . If W ⊗k acts on
an nk-qubit state ρ, then following the notation of Eq. 2.8, the resulting state is

ρW := W ⊗kρ(W †)⊗k = 2−nk/2
∑

p1,...,pk

γ0(p1, . . . , pk)Wσp1 W † ⊗ · · · ⊗ Wσpk W †.

(2.10)

For this to be a k-design, the expectation over all choices of random circuit should match
the expectation over Haar-distributed W ∈ U (2n).

We are now ready to state our main results. Our results apply to a large class of gate
sets which we define below:

Definition 2.7. Let E = {pi ,Ui } be a discrete ensemble of elements from U (d). Define
an operator GE by

GE :=
∑

i

piU
⊗k
i ⊗ (U∗

i )
⊗k . (2.11)

More generally, we can consider continuous distributions. If µ is a probability measure
on U (d) then we can define Gµ by analogy as

Gµ :=
∫

U (d)
dµ(U )U⊗k ⊗ (U∗)⊗k . (2.12)

Then E (or µ) is k-copy gapped if GE (or Gµ) has only k! eigenvalues with absolute
value equal to 1.

For any discrete ensemble E = {pi ,Ui }, we can define a measure µ =∑i piδUi . Thus,
it suffices to state our theorems in terms of µ and Gµ.

The condition on Gµ in the above definition may seem somewhat strange. We will
see in Sect. 3 that when d ≥ k there is a k!-dimensional subspace of (Cd)⊗2k that is acted
upon trivially by any Gµ. Additionally, when µ is the Haar measure on U (d) then Gµ

is the projector onto this space. Thus, the k-copy gapped condition implies that vectors
orthogonal to this space are shrunk by Gµ.

We will see that Gµ is k-copy gapped in a number of important cases. First, we give
a definition of universality that can apply not only to discrete gates sets, but to arbitrary
measures on U (4).

Definition 2.8. Letµ be a distribution on U (4). Suppose that for any open ball S ⊂ U (4)
there exists a positive integer 
 such that µ�
(S) > 0. Then we say µ is universal [for
U (4)].

Here µ�
 is the 
-fold convolution of µ with itself; i.e.

µ�
 =
∫
δU1···U
dµ(U1) · · · dµ(U
).

Whenµ is a discrete distribution over a set {Ui }, Definition 2.8 is equivalent to the usual
definition of universality for a finite set of unitary gates.
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Theorem 2.1. The following distributions on U (4) are k-copy gapped:

(i) Any universal gate set. Examples are U (4) itself, any entangling gate together with
all single qubit gates, or the gate set considered in [26].

(ii) Any approximate (or exact) unitary k-design on 2 qubits, such as the uniform dis-
tribution over the 2-qubit Clifford group, which is an exact 2-design.

Proof.

(i) This is proven in Lemma 3.2.
(ii) This follows straight from Definition 2.2. ��
Theorem 2.2. Let µ be a 2-copy gapped distribution and W be a random circuit on n
qubits obtained by drawing t random unitaries according to µ and applying each of
them to a random pair of qubits. Then there exists C (depending only on µ) such that
for any ε > 0 and any t ≥ C(n(n + log 1/ε)), GW is an ε-approximate unitary 2-design
according to either Definition 2.5 or Definition 2.6.

To prove Theorem 2.2, we show that the second moments of the random circuits converge
quickly to those of a uniform Haar distributed unitary. For W a circuit as in Theorem
2.2, write γW (p1, p2) for the Pauli coefficients of ρW = W ⊗2ρ

(
W †
)⊗2

. Then write
γt (p1, p2) = EWγW (p1, p2) where W is a circuit of length t . Then we have

Lemma 2.1. Letµ and W be as in Theorem 2.2. Let the initial state be ρ with γ0(p, p) ≥
0 and
∑

p γ0(p, p) = 1 (for example the state |ψ〉〈ψ |⊗ |ψ〉〈ψ | for any pure state |ψ〉).
Then there exists a constant C (possibly depending on µ) such that for any ε > 0,

(i)

∑

p1,p2
p1 p2 
=00

(
γt (p1, p2)− δp1 p2

1

2n(2n + 1)

)2

≤ ε (2.13)

for t ≥ Cn log 1/ε.
(ii)

∑

p1,p2
p1 p2 
=00

∣∣∣∣γt (p1, p2)− δp1 p2

1

2n(2n + 1)

∣∣∣∣ ≤ ε (2.14)

for t ≥ Cn(n + log 1/ε) or, when µ is the uniform distribution on U (4) or its
stabiliser subgroup, t ≥ Cn log n

ε
.

We can then extend this to all states by a simple corollary:

Corollary 2.1. Let µ, W and γW be as in Lemma 2.1. Then, for any initial state ρ =
1
2n

∑
p1,p2

γ0(p1, p2)σp1 ⊗ σp2 , there exists a constant C (possibly depending on µ)
such that for any ε > 0,

(i)

∑

p1,p2
p1 p2 
=00

(
γt (p1, p2)− δp1 p2

∑
p 
=0 γ0(p, p)

4n − 1

)2

≤ ε (2.15)

for t ≥ Cn(n + log 1/ε).
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(ii)

∑

p1,p2
p1 p2 
=00

∣∣∣∣∣γt (p1, p2)− δp1 p2

∑
p 
=0 γ0(p, p)

4n − 1

∣∣∣∣∣ ≤ ε (2.16)

for t ≥ Cn(n + log 1/ε).

By the usual definition of an approximate design (Definition 2.5), we only need con-
vergence in the 2-norm (Eq. 2.15), which is implied by 1-norm convergence (Eq. 2.16)
but weaker. However, Definition 2.6, which requires the map to be close to the twirling
operation, requires 1-norm convergence (i.e. Eq. 2.16). Thus, Theorem 2.2 for Definition
2.5 follows from Corollary 2.1(i) and Theorem 2.2 for Definition 2.6 follows from
Corollary 2.1(ii). Theorem 2.2 is proved in Sect. 6 and Corollary 2.1 in Sect. 4.

We note that, in the course of proving Lemma 2.1, we prove that the eigenvalue gap
(defined in Sect. 4.3) of the Markov chain that gives the evolution of the γ (p, p) terms
is O(1/n). It is easy to show that this bound is tight for some gate sets.
Related work. Here we summarise the other efficient constructions of approximate uni-
tary 2-designs.

– The uniform distribution over the Clifford group on n qubits is an exact 2-design [14].
Moreover, [14] described how to sample from the Clifford group using O(n8) classi-
cal gates and O(n3) quantum gates. Our results show that applying O(n(n+log 1/ε))
random two-qubit Clifford gates also achieve an ε-approximate 2-design (although
not necessarily a distribution that is within ε of uniform on the Clifford group).

– Dankert et al. [10] gave a specific circuit construction of an approximate 2-design.
To achieve small error in the sense of Definition 2.5, their circuits require the same
O(n(n + log 1/ε)) gates that our random circuits do. However, when we use Def-
inition 2.6, the circuits from [10] only need O(n log 1/ε) gates while the random
circuits analysed in this paper need to be length O(n(n + log 1/ε)).

– The closest results to our own are in the papers by Oliveira et al. [9,26], which
considered a specific gate set (random single qubit gates and a controlled-NOT) and
proved that the second moments converge in time O(n2(n + log 1/ε)). Our strat-
egy of analysing random quantum circuits in terms of classical Markov chains is
also adapted from [9,26]. In Sect. 3, we generalise this approach to analyse the kth

moments for arbitrary k.
The main results of our paper extend the results of [9,26] to a larger class of gate
sets and improve their convergence bounds. Some of these improvements have been
conjectured by [30], which presented numerical evidence in support of them.

3. Analysis of the Moments

In order to prove our results, we need to understand how the state evolves after each
step of the random circuit. In this section we consider just one step and a fixed pair of
qubits. Later on we will extend this to prove convergence results for multiple steps with
random pairs of qubits drawn at every step. We consider first the Haar distribution over
the full unitary group and then will discuss the more general case of any 2-copy gapped
distribution.

In this section, we work in general dimension d and with a general Hermitian orthog-
onal basis σ0, . . . , σd2−1. Later we will take d to be either 4 or 2n and the σi to be
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Pauli matrices. However, in this section we keep the discussion general to emphasise
the potentially broader applications.

Fix an orthonormal basis for d × d Hermitian matrices: σ0, . . . , σd2−1, normalised
so that tr σpσq = d δp,q . Let σ0 be the identity. We need to evaluate the quantity

EU

(
U⊗kσp1 ⊗ · · · ⊗ σpk (U

†)⊗k
)

=: T (p), (3.1)

where the expectation is over Haar distributed U ∈ U (d). We will need this quantity in
two cases. Firstly, for d = 2n , these are the moments obtained after applying a uniformly
distributed unitary so we know what the random circuit must converge to. Secondly, for
d = 4, this tells us how a random U (4) gate acts on any chosen pair.

Call the quantity in Eq. 3.1 T (p) (we use bold to indicate a k-tuple of coefficients;
take p = (p1, . . . , pk)) and write it in the σp basis as

T (p) =
∑

q

Ĝ(q; p)σq1 ⊗ · · · ⊗ σqk . (3.2)

Here, Ĝ(q; p) is the coefficient in the Pauli expansion of T (p) and we define Ĝ as the
matrix with entries equal to Ĝ(q; p). We have left off the usual normalisation factor
because, as we shall see, with this normalisation Ĝ is a projector. Inverting this, we have

Ĝ(q; p) = d−k tr
(
σq1 ⊗ · · · ⊗ σqk T (p)

)

= d−kEU tr
(
(σq1 ⊗ · · · ⊗ σqk )U

⊗k(σp1 ⊗ · · · ⊗ σpk )(U
†)⊗k
)
. (3.3)

Note that Ĝ is real since T and the basis are Hermitian.
We can gain all the information we need about the Haar integral in Eq. 3.1 with the

following observations:

Lemma 3.1. T (p) commutes with U⊗k for any unitary U.

Proof. Follows from the invariance of the Haar measure on the unitary group.

Corollary 3.1. T (p) is a linear combination of permutations from the symmetric group
Sk.

Proof. This follows from Schur-Weyl duality (see e.g. [16]).

From this, we can prove that Ĝ is a projector and find its eigenvectors.

Theorem 3.1. Ĝ is symmetric, i.e. Ĝ(q; p) = Ĝ(p; q).

Proof. Follows from the invariance of the trace under cyclic permutations.

Theorem 3.2. Pπ is an eigenvector of Ĝ with eigenvalue 1 for any permutation operator
Pπ i.e.

∑

q

Ĝ(p; q)tr (σq1 ⊗ · · · ⊗ σqk Pπ ) = tr (σp1 ⊗ · · · ⊗ σpk Pπ ).

Further, any vector orthogonal to this set has eigenvalue 0.
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Proof. For the first part,
∑

q

Ĝ(p; q)tr (σq1 ⊗ . . .⊗ σqk Pπ )

= d−k
∑

q

EU tr
(
σq1Uσp1U †

)
. . . tr
(
σqk Uσpk U †

)
tr
(
σq1 ⊗ . . .⊗ σqk Pπ

)

= d−k tr

(
PπEU

∑

q1

tr
(
σq1Uσp1U †

)
σq1 ⊗ . . .⊗

∑

qk

tr
(
σqk Uσpk U †

)
σqk

)
(3.4)

Writing U †σpU in the σp basis, we find

1

d

∑

q

tr
(
σqUσpU †

)
σq = UσpU †.

Therefore Eq. 3.4 becomes

tr
(

PπEU U †σp1U ⊗ . . .⊗ U †σpk U
)

= tr
(
σp1 ⊗ . . .⊗ σpk Pπ

)
.

For the second part, consider any vector v which is orthogonal to the permutation oper-
ators (we can neglect the complex conjugate because Pπ is real in this basis), i.e.

∑

q

tr
(
σq1 ⊗ · · · ⊗ σqk Pπ

)
v(q) = 0 (3.5)

for any permutation π . Then
∑

q

Ĝ(p; q)v(q) = d−k
∑

q

tr
(
σq1 ⊗ · · · ⊗ σqk T (p)

)
v(q)

which is zero since T (p) is a linear combination of permutations and v is orthogonal to
this by Eq. 3.5. ��
Theorem 3.3. Ĝ2 = Ĝ, i.e.

∑
q′ Ĝ(p; q′)Ĝ(q′; q) = Ĝ(p; q).

Proof. Using Eq. 3.3,
∑

q′
Ĝ(p; q′)Ĝ(q′; q) =

∑

q′
Ĝ(p; q′)d−k tr

(
σq ′

1
⊗ · · · ⊗ σq ′

k
T (q)
)
.

From Corollary 3.1, T (q) is a linear combination of permutations. This implies, using
Theorem 3.2 that
∑

q′
Ĝ(p; q′)d−k tr

(
σq ′

1
⊗ . . .⊗ σq ′

k
T (q)
)

= d−k tr
(
σp1 ⊗ · · · ⊗ σpk T (q)

)

= Ĝ(p; q)

as required. ��
Corollary 3.2. Ĝ is a projector so has eigenvalues 0 and 1.

We now evaluate Ĝ and T for the cases of k = 1 and k = 2 since these are the cases
we are interested in for the remainder of the paper.
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3.1. k = 1. The k = 1 case is clear: the random unitary completely randomises the
state. Therefore all terms in the expansion are set to zero apart from the identity i.e.

T (p) =
{
σ0 p = 0
0 p 
= 0.

(3.6)

3.2. k = 2. For k = 2, there are just two permutation operators, identity I and swap
F . Therefore there are just two eigenvectors with non-zero eigenvalue (n > 1). In
normalised form, taking them to be orthogonal, their components are

f1(q1, q2) = δq10δq20,

f2(q1, q2) = 1

d2 − 1
δq1q2(1 − δq10).

We will now prove three properties of Ĝ that we need:

1. Ĝ(p1, p2; q1, q2) = 0 if p1 
= p2 or q1 
= q2.

Proof. Consider the function f (q1, q2) = δq1aδq2b with a 
= b. This function has
zero overlap with the eigenvectors f1 and f2 so it goes to zero when acted on by
Ĝ. Therefore Ĝ(p1, p2; a, b) = 0. The claim follows from the symmetry property
(Theorem 3.1). ��
With this we will write Ĝ(p; q) ≡ Ĝ(p1, p2; q1, q2).

2. Ĝ(p; 0) = δp0.

Proof. Let Ĝ act on eigenvector f1. ��
3. Ĝ(p; a) = 1

d2−1
for a, p 
= 0.

Proof. Let Ĝ act on the input δqa . This has zero overlap with f1 and overlap 1
d2−1

with f2. ��
Therefore we have

Ĝ(p1, p2; q1, q2) =

⎧
⎪⎨
⎪⎩

0 p1 
= p2 or q1 
= q2

1 p1 = p2 = q1 = q2 = 0
1

d2−1
p1 = p2 
= 0, q1 = q2 
= 0

. (3.7)

Since T (p1, p2) =∑q1,q2
Ĝ(p1, p2; q1, q2)σq1 ⊗ σq2 , we have

T (p1, p2) =

⎧
⎪⎨
⎪⎩

0, p1 
= p2,

σ0 ⊗ σ0, p1 = p2 = 0,
1

d2−1

∑
p′ 
=0 σp′ ⊗ σp′ p1 = p2 
= 0.

(3.8)

Therefore the terms σp1 ⊗ σp2 with p1 
= p2 are set to zero. Further, the sum of the
diagonal coefficients γ (p, p) is conserved. This allows us to identify this with a proba-
bility distribution (after renormalising) and use Markov chain analysis. To see this, write
again the starting state

ρ = 1

d

∑

q1,q2

γ0(q1, q2)σq1 ⊗ σq2
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with the state after application of any unitary W ,

ρW = 1

d

∑

q1,q2

γW (q1, q2)σq1 ⊗ σq2 = 2−n
∑

q1,q2

γ (q1, q2)
(

Wσq1 W †
)

⊗
(

Wσq2 W †
)
.

Then
∑

q

γW (q, q) = 1

d

∑

q

tr
(
σq ⊗ σqρW

)

= tr (FρW )

= 1

d

∑

q1,q2

γ (q1, q2)tr
(
F
(

Wσq1 W †
)

⊗
(

Wσq2 W †
))

= 1

d

∑

q1,q2

γ (q1, q2)tr
(
σq1σq2

)

=
∑

q

γ (q, q)

as required, where F is the swap operator and we have used Lemmas A.2 and A.1.

3.3. Moments for general universal random circuits. We now consider universal distri-
butions µ that in general may be different from the uniform (Haar) measure on U (d).
Our main result in this section will be to show that a universal distribution on U (4) is
also 2-copy gapped. In fact, we will phrase this result in slightly more general terms and
show that a universal distribution on U (d) is also k-copy gapped for any k. Universality
(Definition 2.8) generalises in the obvious way to U (d), whereas when we say that µ is
k-copy gapped, we mean that

‖Gµ − GU (d)‖∞ < 1, (3.9)

where G? = EU U⊗k ⊗ (U∗)⊗k , with the expectation taken over µ for Gµ or over the
Haar measure for GU (d).

The reason Eq. 3.9 represents our condition for µ to be k-copy gapped is as follows:
Observe that Ĝ and G are unitarily related, so the definition of k-copy gapped could
equivalently be given in terms of Ĝ. We have shown above that ĜU (d) (and thus GU (d))
has all eigenvalues equal to 0 or 1; i.e. is a projector. By contrast, Gµ may not even
be Hermitian. However, we will prove below that all eigenvectors of GU (d) with eigen-
value 1 are also eigenvectors of Gµ with eigenvalue 1. Thus, Eq. 3.9 will imply that
limt→∞(Ĝµ)

t = ĜU (d), just as we would expect for a gapped random walk.
We would like to show that Eq. 3.9 holds whenever µ is universal. This result was

proved in [6] (and was probably known even earlier) whenµ had the form (δU1 +δU2)/2.
Here we show how to extend the argument to any universal µ.

Lemma 3.2. Letµ be a distribution on U (d). Then all eigenvectors of GU (d) with eigen-
value 1 are eigenvectors of Gµ with eigenvalue one. Additionally, if µ is universal then
µ is k-copy gapped for any positive integer k (cf. Eq. 3.9).

In particular, if k = 2 this lemma implies that µ is 2-copy gapped (cf. Theorem 2.1).
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Proof. Let V ∼= Cd be the fundamental representation of U (d), where the action of
U ∈ U (d) is simply U itself. Let V ∗ be its dual representation, where U acts as U∗.
The operators Gµ and GU (d) act on the space V ⊗k ⊗ (V ∗)⊗k . We will see that GU (d)

is completely determined by the decomposition of V ⊗k ⊗ (V ∗)⊗k into irreducible rep-
resentations (irreps). Suppose that the multiplicity of (rλ, Vλ) in V ⊗k ⊗ (V ∗)⊗k is mλ,
where the Vλ’s are the irrep spaces and rλ(U ) the corresponding representation matrices.
In other words

V ⊗k ⊗ (V ∗)⊗k ∼=
⊕

λ

Vλ ⊗ Cmλ , (3.10)

U⊗k ⊗ (U∗)⊗k ∼
∑

λ

|λ〉〈λ| ⊗ rλ(U )⊗ Imλ . (3.11)

Here ∼ indicates that the two sides are related by conjugation by a fixed (U -independent)
unitary.

Let λ = 0 denote the trivial irrep: i.e. V0 = C and r0(U ) = 1 for all U . We claim
that EU rλ(U ) = 0 whenever λ 
= 0 and the expectation is taken over the Haar measure.
To show this, note that EU rλ(U ) commutes with rλ(V ) for all V ∈ U (d) and thus, by
Schur’s Lemma, we must have EU rλ(U ) = cI for some c ∈ C. However, by the transla-
tion-invariance of the Haar measure we have cI = EU rλ(U ) = EU rλ(U V ) = c rλ(V )
for all V ∈ U (d). Since λ 
= 0, we cannot have rλ(V ) = I for all V and so it must be
that c = 0.

Thus, if we write GU (d) and Gµ using the basis on the RHS of Eq. 3.11, we have

GU (d) = |0〉〈0| ⊗ Im0 , (3.12)

where |0〉〈0| is a projector onto the trivial irrep. On the other hand,

Gµ = |0〉〈0| ⊗ Im0 +
∑

λ
=0

|λ〉〈λ| ⊗
(∫

rλ(U )dµ(U )

)
⊗ Imλ . (3.13)

Thus, every eigenvector of GU (d) with eigenvalue one is also fixed by Gµ. For the
remainder of the space, the direct sum structure means that

‖GU (d) − Gµ‖∞ = max
λ
=0

mλ 
=0

∥∥∥∥
∫

rλ(U )dµ(U )

∥∥∥∥∞
. (3.14)

Note that this maximisation only includes λ with dim Vλ > 1. This is because non-
trivial one-dimensional irreps of U (d) have the form det U m for some non-zero inte-
ger m. Under the map U �→ eiφU , such irreps pick up a phase of eimφ . However,
U⊗k ⊗ (U∗)⊗k is invariant under U �→ eiφU . Thus V ⊗k ⊗ (V ∗)⊗k cannot contain any
non-trivial one-dimensional irreps.

Now suppose by contradiction that there exists λ 
= 0 with mλ 
= 0 and ‖ ∫ rλ(U )
dµ(U )‖∞ = 1. (We do not need to consider the case ‖ ∫ rλ(U )dµ(U )‖∞ > 1, since
‖rλ(U )‖∞ = 1 for all U and ‖ · ‖∞ obeys the triangle inequality.) Indeed, the triangle
inequality further implies that there exists a unit vector |v〉 ∈ Vλ such that

∫
dµ(U ) rλ(U )|v〉 = ω|v〉,

for some ω ∈ C with |ω| = 1.
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By the above argument we can assume that dim Vλ > 1. Since Vλ is irreducible, it can-
not contain a one-dimensional invariant subspace, implying that there exists U0 ∈ U (d)
such that

|〈v|rλ(U0)|v〉| = 1 − δ,

for some δ > 0. Since U �→ |〈v|rλ(U )|v〉| is continuous, there exists an open ball S
around U0 such that |〈v|rλ(U )|v〉| ≤ 1 − δ/2 for all U ∈ S. Define S̄ := U (d)\S.

Now we use the fact thatµ is universal to find an 
 such thatµ�
(S) > 0. Next, observe
that
∫

dµ�
(U ) 〈v|rλ(U )|v〉 = ω
. Taking the absolute value of both sides yields

1 =
∣∣∣∣
∫

U (d)
dµ�
(U ) 〈v|rλ(U )|v〉

∣∣∣∣

≤
∫

U (d)
dµ�
(U ) |〈v|rλ(U )|v〉|

=
∫

S
dµ�
(U ) |〈v|rλ(U )|v〉| +

∫

S̄
dµ�
(U ) |〈v|rλ(U )|v〉|

≤ µ�
(S)

(
1 − δ

2

)
+
(
1 − µ�
(S)

)

< 1,

a contradiction. We conclude that ‖GU (d) − Gµ‖∞ < 1.

4. Convergence

In Sect. 3 we saw that iterating any universal gate set on U (d) eventually converges to
the uniform distribution on U (d). Since the set of all two-qubit unitaries is universal on
U (2n), this implies that random circuits eventually converge to the Haar measure. In
this section, we turn to proving upper bounds on this convergence rate, focusing on the
first two moments.

Let Ĝ(i j) be the matrix with Ĝ (with d = 4) acting on qubits i and j and the identity
on the others. Then, if the pair (i, j) is chosen at step t , we can find the coefficients at
step t + 1 by multiplying by Ĝ(i j). In general, a random pair is chosen at each step. So

γt+1(p) =
∑

q

1

n(n − 1)

∑

i 
= j

Ĝ(i j)(p; q)γt (q), (4.1)

where γt+1 are the expected coefficients at step t . We can think of this evolution as
repeated application of the matrix

P = 1

n(n − 1)

∑

i 
= j

Ĝ(i j). (4.2)

For k = 2, the key idea of Oliveira et al. [26] was to map the evolution of the γ (p, p)
coefficients to a Markov chain. The γ (p1, p2) coefficients with p1 
= p2 just decay as
each qubit is chosen and can be analysed directly.

However, we can only map the γ (p, p) coefficients to a probability distribution when
they are non-negative, which is not the case for general states. Most of the rest of the
paper is dedicated to proving Lemma 2.1, which only applies to states with γ (p, p) ≥ 0
and normalised so their sum is 1. Corollary 2.1 then extends this to all states:
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Proof (of Corollary 2.1). Lemma 2.1 still applies to the γ (p1, p2) terms with p1 
= p2.
Therefore we just need to show how to apply Lemma 2.1 to states that initially have
some negative γ (p, p) terms.

For the γ (p, p) terms, Lemma 2.1 says that the random walk starting with any ini-
tial probability distribution converges to uniform in some bounded time t . Let gt (p,
p; q, q) be the coefficients after t steps of the walk starting at a particular point q
(i.e. g0(p, p; q, q) = δp,q ). Now, for any starting state ρ, let the initial coefficients
be γ0(p, p). Then, by linearity, we can write the expected coefficients after t steps
γt (p, p) := EγW (p, p) as

γt (p, p) =
∑

q 
=0

γ0(q, q)gt (p, p; q, q) (4.3)

for p 
= 0.
We can now prove convergence rates for the expected coefficients γt (p, p):

(i) For the 2-norm, we have from Lemma 2.1 that for t ≥ Cn log 1/ε,

∑

p 
=0

(
gt (p, p; q, q)− 1

4n − 1

)2

≤ ε (4.4)

for any q. Note that the normalisation for the γ (p, p) terms with p 
= 0 has changed
from Lemma 2.1 since we are neglecting the γ (0, 0) term here. Now

∑

p 
=0

(
γt (p, p)−

∑
q 
=0 γ0(q, q)

4n − 1

)2

=
∑

p 
=0

⎛
⎝∑

q 
=0

γ0(q, q)

(
gt (p, p; q, q)− 1

4n − 1

)⎞
⎠

2

≤
∑

q 
=0

γ0(q, q)2
∑

q ′ 
=0

∑

p 
=0

(
gt (p, p; q ′, q ′)− 1

4n − 1

)2

≤ (4n − 1)ε
∑

q 
=0

γ0(q, q)2

≤ 4nε
∑

q1,q2

γ0(q1, q2)
2

= 4nε tr ρ2

≤ 4nε,

where the first inequality is the Cauchy-Schwarz inequality. Therefore for t ≥
Cn(n + log 4n/ε), the 2-norm distance from stationarity for the γ (p, p) terms is at
most ε. Choose C ′ such that C ′n(n + log 1/ε) ≥ Cn(n + log 4n/ε) to obtain the
result.

(ii) For the 1-norm, Lemma 2.1 says that for t ≥ Cn(n + log 1/ε),

∑

p 
=0

∣∣∣∣gt (q; p, p)− 1

4n − 1

∣∣∣∣ ≤ ε. (4.5)
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We can then proceed much as for the 2-norm case:

∑

p 
=0

∣∣∣∣∣γt (p, p)−
∑

q 
=0 γ0(q, q)

4n − 1

∣∣∣∣∣

=
∑

p 
=0

∣∣∣∣∣∣
∑

q 
=0

γ0(q, q)

(
gt (p, p; q, q)− 1

4n − 1

)∣∣∣∣∣∣

≤
∑

q 
=0

|γ0(q, q)|
∑

p 
=0

∣∣∣∣gt (p, p; q, q)− 1

4n − 1

∣∣∣∣

≤ ε
∑

q 
=0

|γ0(q, q)|

≤ 2nε.

The last inequality follows from |σq ⊗ σq | = σ0 ⊗ σ0. Therefore for t ≥ Cn(n +
log 2n/ε), the 1-norm distance from stationarity for the γ (p, p) terms is at most ε.

We now proceed to prove Lemma 2.1. Firstly, we will consider the simple case of
k = 1 to prove this process forms a 1-design as this will help us to understand the more
complicated case of k = 2.

4.1. First moments convergence. Recall that ρ = 2−n/2∑
p γ (p)σp and we wish to

evaluate the moments of the coefficients. So for the first moments to converge, we want
to know Eγ (p).

For k = 1, the U (4) random circuit uniformly randomises each pair that is chosen.
More precisely, a pair of sites i, j are chosen at random and all the coefficients with
pi 
= 0 or p j 
= 0 are set to zero. Thus we get an exact 1-design when all sites have been
hit. For other gate sets, the terms do not decay to zero but decay by a factor depending
on the gap of Ĝ. Call the gap �; for U (4) � = 1 and for others 0 < � ≤ 1 and � is
independent of n. Therefore once each site has been hit m times the terms have decayed
by a factor (1 −�)m .

For a bound like the mixing time (see Sect. 4.3 for definition), we want to bound
the quantity

∑
p 
=0 |EWγW (p)|, where γW (p) is the Pauli coefficient after applying the

random circuit W . We also want 2-norm bounds, so we bound
∑

p 
=0(EWγW (p))2 too.

We will in fact find bounds on
∑

p 
=0 EW |γW (p)| and
∑

p 
=0(EW |γW (p)|)2, which are
stronger.

A standard problem in the theory of randomised algorithms is the ‘coupon collector’
problem. If a magazine comes with a free coupon, which is chosen uniformly randomly
from n different types, how many magazines should you buy to have a high probability
of getting all n coupons? It is not hard to show that n ln n

ε
samples (magazines) have at

least a 1 − ε probability of including all n coupons. Using this, we expect all sites to
be hit with probability at least 1 − ε after�(n log n

ε
) steps. This argument can be made

precise in this context by bounding the non-identity coefficients. We find, as expected,
that the sum is small after O(n log n) steps:
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Lemma 4.1. After O(n log 1/ε) steps

∑

p 
=0

(EW |γW (p)|)2 ≤ ε,

and after O(n log n
ε
) steps,

∑

p 
=0

EW |γW (p)| ≤ ε. (4.6)

Proof. At each step, a pair of sites is chosen at random and any terms with non-identity
coefficients for this pair decay by a factor (1 −�). For example, the term σ1 ⊗ σ

⊗(n−1)
0

decays whenever the first site is chosen. Thus the probability of each term decaying
depends on the number of zeroes. We start with the 1-norm bound. ��

Suppose the circuit applied after t steps is Wt . Consider EWt |γWt (p)| for any p with
d non-zeroes. Since the state ρ is physical, tr ρ2 ≤ 1, so

∑
p γ

2
0 (p) ≤ 1. Now, in each

step, if any site is chosen where p is non-zero, this term decays by a factor (1 − �).
This occurs with probability 1− (d−n)(d−n−1)

n(n−1) ≥ d/n, the probability of choosing a pair
where at least one site is non-zero. Therefore

E|γWt (p)| ≤ ((1 −�)d/n + (1 − d/n)) |γWt−1(p)|,

where the expectation is over the circuit applied at step t . If we iterate this t times we
find

EW |γW (p)| ≤ exp(−�td/n)|γ0(p)|,

where the expectation here is over all random circuits for the t steps. We now sum over
all p:

∑

p 
=0

EW |γW (p)| ≤
n∑

d=1

exp(−�td/n)
∑

d(p)=d

|γ0(p)|,

where d(p) is the number of non-zeroes in p. For the 1-norm bound, we can simply
bound |γ0(p)| ≤ 1 to give

∑
d(p)=d |γ0(p)| ≤ (nd

)
3d so

∑

p 
=0

EW |γW (p)| ≤ (1 + 3 exp(−�t/n))n − 1,

where we have used the binomial theorem. Now let t = n
�

ln 3n
ε

. This gives

∑

p 
=0

EW |γW (p)| ≤ (1 + ε/n)n − 1 = O(ε).



274 A. W. Harrow, R. A. Low

For the 2-norm bound,

∑

p 
=0

(EW |γW (p)|)2 ≤
∑

p 
=0

exp(−2�td/n)γ 2
0 (p)

=
n∑

d=1

exp(−2�td/n)
∑

d(p)=d

γ 2
0 (p)

≤
n∑

d=1

exp(−2�td/n)

≤ exp(−2�t/n)

1 − exp(−2�t/n)
,

where we have used
∑

p γ
2
0 (p) ≤ 1. We find after n

2� ln 1/ε steps that

∑

p 
=0

(EW |γW (p)|)2 ≤ ε

1 − ε

4.2. Second moments convergence. Firstly, the σp1 ⊗ σp2 terms for p1 
= p2 decay in
a similar way to the non-identity terms in the 1-design analysis. In fact, the proof of
Lemma 4.1 carries over almost identically to this case to give

Lemma 4.2. After O(n log 1/ε) steps

∑

p1 
=p2

(EW |γW (p1, p2)|)2 ≤ ε

and after O(n(n + log 1/ε)) steps

∑

p1 
=p2

EW |γW (p1, p2)| ≤ ε.

Proof. Instead of the number of zeroes governing the decay rate, we need to count the
number of places where p1 and p2 differ. This gives

E|γWt (p1, p2)| ≤ ((1 −�)d/n + (1 − d/n)) |γWt−1(p1, p2)|,

where now d is the number of differing sites. There are
(n

d

)
12d4n−d states that differ in

d places so we find

∑

p1 
=p2

EW |γW (p1, p2)| ≤ 4n[(1 + 3 exp(−�t/n))n − 1].

Set t = n
�
(n ln 4 + ln 1/ε) to make this O(ε). The 2-norm bound follows in the same

way as for Lemma 4.1. ��
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We now need to prove the γ (p, p) terms converge quickly. We have seen above that
the sum of the terms γ (p, p) is conserved and, for the purposes of proving Lemma 2.1,
we assume the sum is 1 and γ (p, p) ≥ 0 for all p.

To illustrate the evolution, consider the simplest case when the gates are chosen from
U (4). We have evaluated Ĝ in Sect. 3.2 for k = 2 for this case. Translated into coeffi-
cients this yields the following update rule, where we have written it for the case when
qubits 1 and 2 are chosen:

γt+1(r1, r2, r3, . . . , rn, s1, s2, s3, . . . , sn)

=

⎧
⎪⎪⎨
⎪⎪⎩

0 (r1, r2) 
= (s1, s2)

γt (0, 0, r3, . . . , rn, 0, 0, s3, . . . , sn) (r1, r2) = (s1, s2) = (0, 0)
1
15

∑
r ′
1,r

′
2

r ′
1r ′

2 
=0

γt (r ′
1, r

′
2, r3, . . . , rn, r ′

1, r
′
2, s3, . . . , sn) (r1, r2) = (s1, s2) 
= (0, 0).

(4.7)

The key idea of Oliveira et al. [26] was to map the evolution of the γ (p, p) coefficients to
a Markov chain. We can apply this here to get, on state space {0, 1, 2, 3}n , the evolution:

1. Choose a pair of sites uniformly at random.
2. If the state is 00 it remains 00.
3. Otherwise, choose the state uniformly at random from {0, 1, 2, 3}2\{00}.
This is the correct evolution since, if the initial state is distributed according to γt (q, q),
the final state is distributed according to γt+1(p, p).

The evolution for other gate sets will be similar, but the states will not be chosen
uniformly randomly in the third step. However, the state 00 will remain 00 and the
stationary distribution on the other 15 states is the same. We will find the convergence
times for general gate sets and then consider the U (4) gate set since we can perform a
tight analysis for this case.

4.3. Markov chain analysis. Before finding the convergence rate for our problem, we
will briefly introduce the basics of Markov chain mixing time analysis. All of these
standard results can be found in Ref. [25] and references therein.

A process is Markov if the evolution only depends on the current state rather than the
full state history. Therefore the evolution of the state can be thought of as a matrix, the
transition matrix, acting on a vector which represents the current distribution. We will
only be interested in discrete time processes so the state after t steps is given by the t th

power of the transition matrix acting on the initial distribution.
We say a Markov chain is irreducible if it is possible to get from one state to any

other state in some number of steps. Further, a chain is aperiodic if it does not return to
a state at regular intervals. If a chain is both irreducible and aperiodic then it is said to be
ergodic. A well known result of Markov chain theory is that all ergodic chains converge
to a unique stationary distribution. In matrix language this says that the transition matrix
P has eigenvalue 1 with no multiplicity and all other eigenvalues have absolute value
strictly less than 1. We will also need the notion of reversibility. A Markov chain is
reversible if the time reversed chain has the same transition matrix, with respect to some
distribution. This condition is also known as detailed balance:

π(x)P(x, y) = π(y)P(y, x). (4.8)
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It can be shown that a reversible ergodic Markov chain is only reversible with respect
to the stationary distribution. So above π(x) is the stationary distribution of P . An
immediate consequence of this is that for a chain with uniform stationary distribution,
it is reversible if and only if it is symmetric (i.e. P(x, y) = P(y, x)). Note also that
reversible chains have real eigenvalues, since they are similar to the symmetric matrix√
π(x)
π(y) P(x, y).
With these definitions and concepts, we can now ask how quickly the Markov chain

converges to the stationary distribution. This is normally defined in terms of the 1-norm
mixing time. We use (half the) 1-norm distance to measure distances between distribu-
tions:

||s − t || = 1

2
||s − t ||1 = 1

2

∑

i

|si − ti |. (4.9)

We assume all distributions are normalised so then 0 ≤ ||s − t || ≤ 1. We can now define
the mixing time:

Definition 4.1. Let π be the stationary distribution of P. Then if P is ergodic the mixing
time τ is

τ(ε) = max
s

min
t

{t ≥ 0 : ∣∣∣∣Pt s − π
∣∣∣∣ ≤ ε}. (4.10)

We will also use the (weaker) 2-norm mixing time (note this is not the same as τ2 in
Ref. [25]):

Definition 4.2. Let π be the stationary distribution of P. Then if P is ergodic the 2-norm
mixing time τ2 is

τ2(ε) = max
s

min
t

{t ≥ 0 : ∣∣∣∣Pt s − π
∣∣∣∣

2 ≤ ε}. (4.11)

Unless otherwise stated, when we say mixing time we are referring to the 1-norm mixing
time.

There are many techniques for bounding the mixing time, including finding the sec-
ond largest eigenvalue of P . This gives a good measure of the mixing time because
components parallel to the second largest eigenvector decay the slowest. We have (for
reversible ergodic chains)

Theorem 4.1 (see Ref. [25], Corollary 1.15).

τ(ε) ≤ 1

�
ln

1

π∗ε
,

where π∗ = min π(x) and � = min(1 − λ2, 1 + λmin), where λ2 is the second largest
eigenvalue and λmin is the smallest. � is known as the gap.

If the chain is irreversible, it may not even have real eigenvalues. However, we can
bound the mixing time in terms of the eigenvalues of the reversible matrix PP∗, where
P∗(x, y) = π(y)

π(x) P(y, x). In this case we have ([25], Corollary 1.14)

τ(ε) ≤ 2

�PP∗
ln

1

π∗ε
, (4.12)



Random Quantum Circuits are Approximate 2-designs 277

where now �PP∗ is the gap of the chain PP∗. Note that for a reversible chain P = P∗
and �PP∗ ≈ 2�, so the bounds are approximately the same.

This can also be converted into a 2-norm mixing time bound:

τ2(ε) ≤ 2

�PP∗
ln 1/ε. (4.13)

To bound the gap, we will use the comparison theorem in Theorem 4.2 below. In this
theorem, we are thinking of the Markov chain as a directed graph where the vertices
are the states and there are edges for allowed transitions (i.e. transitions with non-zero
probability). For irreducible chains, it is possible to make a path from any vertex to any
other; we call the path length the number of transitions in such a path (which will in
general depend on the choice of path).

Theorem 4.2 (see Ref. [25], Theorem 2.14). Let P and P̂ be two Markov chains on the
same state space � with the same stationary distribution π . Then, for every x 
= y ∈ �
with P̂(x, y) > 0 define a directed path γxy from x to y along edges in P and let its
length be |γxy |. Let � be the set of all such paths. Then

� ≥ �̂/A

for the gaps � and �̂ where

A = A(�) = max
a 
=b,P(a,b) 
=0

1

π(a)P(a, b)

∑

x 
=y:(a,b)∈γxy

π(x)P̂(x, y)|γxy |.

For example, when comparing 1-dimensional random walks there is no choice in the
paths; they must pass through every point between x and y. Further, the walk can only
progress one step at a time so (without loss of generality, for reversible chains) let
b = a + 1 to give

A = max
a

1

π(a)P(a, a + 1)

∑

x≤a

∑

y≥a+1

π(x)P̂(x, y)(y − x)

= max
a

P̂(a, a + 1)

P(a, a + 1)
. (4.14)

A generalisation of the comparison theorem involves constructing flows, which are
weighted sets of paths between states. This can give a tighter bound since bottlenecks
are averaged over. This gives a modified comparison theorem:

Theorem 4.3 ([12], Theorem 2.3). Let P and P̂ be two Markov chains on the same
state space � with the same stationary distribution π . Then, for every x 
= y ∈ � with
P̂(x, y) > 0, construct a set of directed paths Pxy from x to y along edges in P. We
define the flow function f which maps each path γxy ∈ Pxy to a real number in the
interval [0, 1] such that

∑

γxy∈Pxy

f (γxy) = P̂(x, y).
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Again, let the length of each path be |γxy |. Then

� ≥ �̂/A

for the gaps � and �̂ where

A = A( f )= max
a 
= b,P(a,b) 
= 0

1

π(a)P(a, b)

∑

x 
= y,γxy ∈Pxy :(a,b)∈ γxy

π(x) f (γxy)|γxy |. (4.15)

Note that we recover the comparison theorem when there is just one path between each
x and y.

4.3.1. log-Sobolev constant We will need tighter, but more complicated, mixing time
results to prove the tight result for the U (4) case. We use the log-Sobolev constant:

Definition 4.3. The log-Sobolev constant ρ of a chain with transition matrix P and
stationary distribution π is

ρ = min
f

∑
x 
=y( f (x)− f (y))2 P(x, y)π(y)
∑

x π(x) f (x)2 log f (x)2∑
y π(y) f (y)2

.

The mixing time result is:

Lemma 4.3 (see Ref. [13], Theorem 3.7’). The mixing time of a finite, reversible, irre-
ducible Markov chain is

τ(ε) = O

(
1

ρ
log log

1

π∗
+

1

�
log

d

ε

)
, (4.16)

where ρ is the Sobolev constant, π∗ is the smallest value of the stationary distribution,
� is the gap and d is the size of the state space.

Further, the comparison theorem (Theorem 4.2) works just the same to give

ρ ≥ ρ̂/A.

We will need one more result, due to Diaconis and Saloff-Coste:

Lemma 4.4 ([13], Lemma 3.2). Let Pi , i = 1, . . . , d, be Markov chains with gaps �i
and Sobolev constants ρi . Now construct the product chain P. This chain has state space
equal to the product of the spaces for the chains Pi and at each step one of the chains is
chosen at random and run for one step. Then P has spectral gap given by:

� = 1

d
min

i
�i

and Sobolev constant:

ρ = 1

d
min

i
ρi .
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4.4. Convergence proof. We now prove the Markov chain convergence results to show
that the γ (p, p) terms converge quickly. We have already shown that the γ (p1, p2)

terms with p1 
= p2 converge quickly and that there is no mixing between these terms
and the γ (p, p) terms. Therefore, in this section, we remove such terms from Ĝ.

We want to prove the Markov chain with transition matrix (Eq. 4.2)

P = 1

n(n − 1)

∑

i 
= j

Ĝ(i j)

converges quickly. Firstly, we know from Sect. 3.3 that P has two eigenvectors with
eigenvalue 1. The first is the identity state (σ0 ⊗ σ0) and the second is the uniform sum
of all non-identity terms ( 1

4n−1

∑
p 
=0 σp ⊗ σp). From now on, we remove the identity

state. This makes the chain irreducible. Since we know it converges, it must be aperiodic
also so the chain is ergodic and all other eigenvalues are strictly between 1 and −1.

We show here that the gap of this chain, up to constants, does not depend on the
choice of 2-copy gapped gate set. In the second half of the paper we find a tight bound
on the gap for the U (4) case which consequently gives a tight bound on the gap for all
universal sets.

Since the stationary distribution is uniform, the chain is reversible if and only if P is
a symmetric matrix. A sufficient condition for P to be symmetric is for Ĝ(i j) to be sym-
metric. We saw in Theorem 3.1 that for the U (4) gate set case Ĝ(i j) is symmetric. In fact,
the proof works identically to show that Ĝ(i j) is symmetric for any gate set, provided
the set is invariant under Hermitian conjugation. However, 2-copy gapped gate sets do
not necessarily have this property so the Markov chain is not necessarily reversible. We
will find equal bounds (up to constants) for the gaps of both P (if Ĝ is symmetric) and
PP∗ (if Ĝ is not symmetric) below:

Theorem 4.4. Let µ be any 2-copy gapped distribution of gates. If µ is invariant under
Hermitian conjugation then let�P be the eigenvalue gap of the resulting Markov chain
matrix P. Then

�P = �(�U (4)), (4.17)

where �U (4) is the eigenvalue gap of the U (4) chain. If µ is not invariant under
Hermitian conjugation, then let �PP∗ be the eigenvalue gap of the resulting Markov
chain matrix PP∗. Then

�PP∗ = �(�U (4)). (4.18)

Proof. We will use the comparison method with flows (Theorem 4.3). Firstly consider
the case where µ is closed under Hermitian conjugation, i.e. Ĝ is symmetric.

We will compare P to the U (4) chain, which we call PU (4). Recall that this chain
chooses a pair at random and does nothing if the pair is 00 and chooses a random state
from {0, 1, 2, 3}2\{00} otherwise.

To apply Theorem 4.3, we need to construct the flows between transitions in PU (4).
We will choose paths such that only one pair is modified throughout. For example (with
n = 4), the transition 1000 → 2000 is allowed in PU (4). To construct a path in P , we
need to find allowed transitions between these two paths in P . Ĝ may not include the
transition 10 → 20 directly, however, Ĝ is irreducible on this subspace of just two pairs.
This means that a path exists and can be of maximum length 14 if it has to cycle through
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all intermediate states (in fact, since Ĝ is symmetric the maximum path length is 8; all
that is important here is that it is constant). For example, the transitions 10 → 11 → 20
might be allowed. Then we could choose the full path to be 1000 → 1100 → 2000. In
this case we have chosen the path to involve transition pairing sites 1 and 2. However,
we could equally well have chosen any pairing; we could pair the first site with any of
the others. We can choose 3 paths in this way. For this example, the flow we want to
choose will be all 3 of these paths equally weighted. We now use this idea to construct
flows between all transitions in PU (4) to prove the result.

Let x 
= y ∈ � and let d(x, y) be the Hamming distance between the states
(d(x, y) gives the number of places at which x and y differ). There are two cases
where PU (4)(x, y) 
= 0:

1. d(x, y) = 2. Here we must choose a unique pairing, specified by the two sites that
differ. Make all transitions in P using this pair giving just one path.

2. d(x, y) = 1. For this case, choose all possible pairings of the changing site that give
allowed transitions in PU (4). For each pairing, construct a path in P modifying only
this pair. If the differing site is initially non-zero then there are n − 1 such pairings;
if the differing site is initially zero then there are n − z(x) pairings where z(x) is
the number of zeroes in the state x .

All the above paths are of constant length since we have to (at most) cycle through all
states of a pair. We must now choose the weighting f (γxy) for each path such that

∑

Pxy

f (γxy) = PU (4)(x, y), (4.19)

where Pxy is the set of all paths from x to y constructed above. We choose the weighting
of each path to be uniform. We just need to calculate the number of paths in Pxy to find
f :

1. d(x, y) = 2. There is just one path so f (γxy) = PU (4)(x, y) = �(1/n2).
2. d(x, y) = 1. If the differing site is initially non-zero then PU (4)(x, y) = �(1/n)

and there are n − 1 paths so f (γxy) = PU (4)(x,y)
n−1 = �(1/n2). If the differing site

is initially zero then PU (4)(x, y) = �
(

n−z(x)
n2

)
and there are n − z(x) paths so

f (γxy) = PU (4)(x,y)
n−z(x) = �(1/n2).

So for all paths, f = �(1/n2). We now just need to know how many times each edge
(a, b) in P is used to calculate A:

A = max
a 
=b,P(a,b) 
=0

A(a, b), (4.20)

where

A(a, b) = 1

P(a, b)

∑

x 
=y,γxy∈Pxy :(a,b)∈γxy

f (γxy). (4.21)

We have cancelled the factors of π(x) because the stationary distribution is uniform. We
have also ignored the lengths of the paths since they are all constant.

To evaluate A(a, b), we need to know how many paths pass through each edge (a, b).
We again consider the two possibilities separately:
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1. d(a, b) = 2. Suppose a and b differ at sites i and j . Firstly, we need to count how
many transitions from x to y in PU (4) could use this edge, and then how many paths
for each transition actually use the edge.
To find which x and y could use the edge, note that x and y must differ at sites i ,
j or both. Furthermore, the values at the sites other than i and j must be the same
as for a (and therefore b). There is a constant number of x, y pairs that satisfy this
condition. Now, for each x, y pair satisfying this, paths that use this edge must use
the pairing i, j for all transitions. Since in the paths we have chosen above there is
a unique path from x to y for each pairing, there is at most one path for each x, y
pair that uses edge a, b.
For d(a, b) = 2, P(a, b) = �(1/n2) so A(a, b) is a constant for this case.

2. d(a, b) = 1. Let there be r pairings that give allowed transitions in P between a
and b. As above, each pairing gives a constant number of paths. So the numerator
is �(r/n2). Further, P(a, b) = �(r/n2). So again A(a, b) is constant.

Combining, A is a constant so the result is proven for the case Ĝ is symmetric.
We now turn to the irreversible case. We now need to bound the gap of PP∗ = PPT .

This chain selects two (possibly overlapping) pairs at random and applies Ĝ to one of
them and ĜT to the other. We can use the above exactly by choosing Ĝ to perform the
transitions above and ĜT to just loop the states back to themselves. By aperiodicity (the
greatest common divisor of loop lengths is 1), we can always find constant length paths
that do this.

Now we need to know the gap of the U (4) chain. We can, by a simple application of
the comparison theorem, show it is �(1/n2). However, in the second half of this paper
we show it is �(1/n). This gives us (using Theorem 4.1):

Corollary 4.1. The Markov chain P has mixing time O(n(n + log 1/ε)) and 2-norm
mixing time O(n log 1/ε).

We conjecture that the mixing time (as well as Lemma 4.2) can be tightened to�(n log n
ε
),

which is asymptotically the same as for the U (4) case:

Conjecture 4.1. The second moments for the case of general 2-copy gapped distributions
have 1-norm mixing time �(n log n

ε
).

It seems likely that an extension of our techniques in Sect. 5 could be used to prove this.
Combining the convergence results we have proved our general result Lemma 2.1:

Proof (of Lemma 2.1). Combining Corollary 4.1 (for the γ (p, p) terms) and Lemma
4.2 (for the γ (p1, p2), p1 
= p2 terms) proves the result.

We have now shown that the first and second moments of random circuits converge
quickly. For the remainder of the paper we prove the tight bound for the gap and mixing
time of the U (4) case and show how mixing time bounds relate to the closeness of the
2-design to an exact design. Only for the U (4) case is the matrix Ĝ a projector so in
this sense the U (4) random circuit is the most fundamental. While we expect the above
mixing time bound is not tight, we can prove a tight mixing time result for the U (4)
case. However, using our definition of an approximate k-design, the gap rather than the
mixing time governs the degree of approximation.
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5. Tight Analysis for the U(4) Case

We have already found tight bounds for the first moments in Lemma 4.1: just set� = 1.

5.1. Second moments convergence. We need to prove a result analogous to Lemma 4.2
for the terms σp1 ⊗ σp2 , where p1 
= p2. We already have a tight bound for the 2-norm
decay, by setting � = 1 into Lemma 4.2. We tighten the 1-norm bound:

Lemma 5.1. After O(n log n
ε
) steps

∑

p1 
=p2

EW |γW (p1, p2)| ≤ ε. (5.1)

Proof. We will split the random circuits up into classes depending on how many qubits
have been hit. Let H be the random variable giving the number of different qubits that
have been hit. We can work out the distribution of H and bound the sum of |γW (p1, p2)|
for each outcome.

Firstly we have, after t steps,

P(H ≤ h) ≤
(

n

h

)(
h(h − 1)

n(n − 1)

)t

≤
(

n

h

)
(h/n)t .

Now, for each qubit hit, each coefficient which has p1 and p2 differing in this place is
set to zero. So after h have been hit, there are only (at most) 16(n−h) terms in the sum in
Eq. 5.1. As before, the state is a physical state, tr ρ2 ≤ 1 so

∑
p1 p2

γ 2(p1, p2) ≤ 1 so∑
p1 p2

|γ (p1, p2)| ≤ √
N if there are at most N non-zero terms in the sum. Therefore

we have, after t steps,

∑

p1 
=p2

EW |γW (p1, p2)| ≤
n−1∑

h=1

P(H = h)16(n−h)/2

≤
n−1∑

h=1

P(H ≤ h)4(n−h)

≤
n−1∑

h=1

(
n

h

)
(h/n)t 4(n−h)

=
n−1∑

h=1

(
n

h

)
(1 − h/n)t 4h h → n − h

≤
n−1∑

h=1

(
n

h

)
exp(−ht/n)4h .
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Now, let t = n ln n
ε
:

∑

p1 
=p2

EW |γW (p1, p2)| ≤
n−1∑

h=1

(
n

h

)(
4ε

n

)h

=
(

1 +
4ε

n

)n

− 1 −
(

4ε

n

)n

= O(ε),

where the last line follows from the binomial theorem. ��
This, combined with the mixing time result we prove below, completes the proof that

the second moments of the random circuit converge in time O(n log n
ε
).

5.2. Markov chain of coefficients. The Markov chain acting on the coefficients is reduc-
ible because the state {0}n is isolated. However, if we remove it then the chain becomes
irreducible. The presence of self loops implies aperiodicity, therefore the chain is ergo-
dic. We have already seen that the chain converges to the Haar uniform distribution
(in Sect. 1.1), therefore the stationary state is the uniform state π(x) = 1/(4n − 1).
Further, since the chain is symmetric and has uniform stationary distribution, the chain
satisfies detailed balance (Eq. 4.8) so is reversible. We now turn to obtaining bounds on
the mixing time of this chain.

We want to show that the full chain converges to stationarity in time�(n log n
ε
). This

implies (see later) that the gap is�(1/n). To prove this, we will construct another chain
called the zero chain. This is the chain that counts the number of zeroes in the state.
Since it is the zeroes that slow down the mixing, this chain will accurately describe the
mixing time of the full chain.

Lemma 5.2. The zero chain has transition matrix P on state space (we count non-zero
positions) � = {1, 2, . . . , n}.

P(x, y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2x(3n−2x−1)
5n(n−1) y = x

2x(x−1)
5n(n−1) y = x − 1
6x(n−x)
5n(n−1) y = x + 1

0 otherwise

(5.2)

for 1 ≤ x, y ≤ n.

Proof. Suppose there are n − x zeroes (so there are x non-zeroes). Then the only way
the number of zeroes can decrease (i.e. for x to increase) is if a non-zero item is paired
with a zero item and one of the 9 (out of 15) new states is chosen with no zeroes. The
probability of choosing such a pair is 2x(n−x)

n(n−1) so the overall probability is 9
15

2x(n−x)
n(n−1) .

The number of zeroes can increase only if a pair of non-zero items is chosen and one
of the 6 states is chosen with one zero. The probability of this occurring is 6

15
x(x−1)
n(n−1) .

The probability of the number of zeroes remaining unchanged is simply calculated
by requiring the probabilities to sum to 1.

We see that the zero chain is a one-dimensional random walk on the line. It is a lazy
random walk because the probability of moving at each step is < 1. However, as the
number of zeroes decreases, the probability of moving increases monotonically:

1 − P(x, x) = 2x(3n − 2x − 1)

5n(n − 1)
≥ 2x/5n < 1. (5.3)

��
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Lemma 5.3. The stationary distribution of the zero chain is

π0(x) = 3x
(n

x

)

4n − 1
. (5.4)

Proof. This can be proven by multiplying the transition matrix in Lemma 5.2 by the
state Eq. 5.4. Alternatively, it can be proven by counting the number of states with n − x
zeroes. There are

(n
x

)
ways of choosing which sites to make non-zero and each non-zero

site can be one of three possibilities: 1, 2 or 3. The total number of states is 4n −1, which
gives the result. ��
Below we will prove the following theorem:

Theorem 5.1. The zero chain mixes in time �(n log n
ε
).

The 2-norm mixing time follows easily:

Theorem 5.2. The zero chain has 2-norm mixing time O(n log 1/ε).

Proof. We use a lower bound on the 1-norm mixing time to show that the gap of the
zero chain is�(1/n) and then use the 2-norm mixing bound Eq. 4.13. In [25], Theorem
4.9, they prove the lower bound:

τ1(ε) ≥ 1 −�

�
ln

1

2ε
, (5.5)

where � is the eigenvalue gap. In Theorem 5.1, we showed τ1(ε) ≤ Cn ln n
ε

for some
constant C . Combining,

1 −�

�
ln

1

2ε
≤ Cn ln

n

ε
(5.6)

for all ε > 0. Divide by ln 1/ε and take the limit ε → 0 to find

1 −�

�
≤ Cn (5.7)

which implies the gap is �(1/n). The 2-norm bound now follows from Eq. 4.13. ��
Before proving Theorem 5.1, we will show how the mixing time of the full chain follows
from this.

Corollary 5.1. The full chain mixes in time �(n log n
ε
).

Proof. Once the zero chain has approximately mixed, the distribution of zeroes is almost
correct. We need to prove that the distribution of non-zeroes is correct after O(n log n

ε
)

steps too.
Once each site of the full chain has been hit, meaning it is chosen and paired with

another site so not both equal zero, the chain has mixed. This is because, after each
site has been hit, the probability distribution over the states is uniform. When the zero
chain has approximately mixed, a constant fraction of sites are zero so the probability
of hitting a site at each step is�(1/n). By the coupon collector argument, each site will
have been hit with probability at least 1 − ε in time O(n log n

ε
). Once the zero chain has

mixed to ε′, we can run the full chain this extra number of steps to ensure each site has
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been hit with high probability. Since the mixing of the zero chain only increases with
time, the distance to stationarity of the full chain is now 1− ε− ε′. We make this formal
below.

After t0 = O(n log n
ε′ ) steps, the number of zeroes is ε′-close to the stationary distri-

bution π0 by Theorem 5.1 and only gets closer with more steps since the distance to sta-
tionarity decreases monotonically. The stationary distribution Eq. 5.4 is approximately
a Gaussian peaked at 3n/4 with O(n) variance. This means that, with high probability,
the number of non-zeroes is close to 3n/4. We will in fact only need that there is at least
a constant fraction of non-zeroes; with probability at least 1 − ε′ − exp(−�(n)) there
will be at least n/2.

To prove the mixing time, we run the chain for time t0 so the zero chain mixes to
ε′. Then run for t1 additional steps. Let Hi,t be the event that site i is hit at step t . Let
Hi = ∪t0+t1

t=t0+1 Hi,t and H = ∩n
i=1 Hi . We want to show P(H) is close to 1, or, in other

words, that all sites are hit with high probability. Further let Xt be the random variable
giving the number of non-zeroes at step t .

If at step t − 1 site i is non-zero then the event Hi,t occurs if the qubit is chosen,
which occurs with probability 2/n. If, however, it was zero then it must be paired with
a non-zero thing for Hi,t to hold. Conditioned on any history with Xt−1 ≥ n/2, this
probability is ≥ 1/n. In particular, we can condition on not having previously hit i and
the bound does not change. Combining we have

P

⎛
⎝Hc

i,t

∣∣∣∣
[
Xt−1 ≥ n/2

]⋂
⎛
⎝

t−1⋂

t ′=t0+1

Hc
i,t ′

⎞
⎠
⎞
⎠ ≤ 1 − 1/n.

Then, after t1 extra steps,

P

(
Hc

i

∣∣∣∣
t0+t1−1⋂

t=t0

[Xt ≥ n/2]

)
≤ (1 − 1/n)t1 ,

which, using the union bound, gives

P

(
Hc
∣∣∣∣

t0+t1−1⋂

t=t0

[Xt ≥ n/2]

)
≤ n(1 − 1/n)t1 .

Now, since the zero chain has mixed to ε′,

P

(
t0+t1−1⋂

t=t0

[Xt ≥ n/2]

)
≤ t1

n−1∑

x=n/2

π0(x) + ε′ ≤ t1 exp(−O(n)) + ε′,

so

P(Hc) ≤ n(1 − 1/n)t1 + t1 exp(−O(n)) + ε′.

Now, choose t1 = n ln 2n
ε

so that P(Hc) ≤ δ, where δ = ε + t1 exp(−O(n)). Choose
ε = 1/n so that δ is 1/ poly(n). Now, using the bound on P(Hc), we can write the state
v after t1 = O(n log n) steps as

v = (1 − δ)π + δπ ′,
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where π is the stationary distribution and π ′ is any other distribution. Using this,

||v − π || ≤ δ.

We now apply Lemma A.14 to show that after O(n log n
ε
) steps the distance to stationa-

rity of the full chain is ε. ��

5.3. Proof of Theorem 5.1. We will now proceed to prove Theorem 5.1. We present an
outline of the proof here; the details are in Sect. A.2.

Firstly, note that by the coupon collector argument, the lower bound on the time is
�(n log n). We need to prove an upper bound equal to this. Intuition says that the mixing
time should take time O(n log n) because the walk has to move a distance�(n) and the
waiting time at each step is proportional to n, n/2, n/3, . . . which sums to O(n log n),
provided each site is not hit too often. We will show that this intuition is correct using
the Chernoff bound and log-Sobolev (see later) arguments.

We will first work out concentration results of the position after some number of
accelerated steps. The zero chain has some probability of staying still at each step.
The accelerated chain is the zero chain conditioned on moving at each step. We define
the accelerated chain by its transition matrix:

Definition 5.1. The transition matrix for the accelerated chain is

Pa(x, y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 y = x
x−1

3n−2x−1 y = x − 1
3(n−x)

3n−2x−1 y = x + 1
0 otherwise

. (5.8)

We use the accelerated chain in the proof to firstly prove the accelerated chain mixes
quickly, then to bound the waiting time at each step to obtain a mixing time bound for
the zero chain.

To prove the mixing time bound, we will split the walk up into three phases. We will
split the state space into three (slightly overlapping) parts and the phase can begin at
any point within that space. So each phase has a state space �i ⊂ [1, n], an entry space
Ei ⊂ �i and an exit condition Ti . We say that a phase completes successfully if the exit
condition is satisfied in time O(n log n) for an initial state within the entry space. When
the exit condition is satisfied, the walk moves onto the next phase.

The phases are:

1. �1 = [1, nδ] for some constant δ with 0 < δ < 1/2. E1 = �1 (i.e. it can start
anywhere) and T1 is satisfied when the walk reaches nδ . For this part, the probability
of moving backwards (gaining zeroes) is O(nδ−1) so the walk progresses forwards
at each step with high probability. This is proven in Lemma A.8. We show that the
waiting time is O(n log n) in Lemma A.9.

2. �2 = [nδ/2, θn] for some constant θ with 0 < θ < 3/4. E2 = [nδ, θn] and T2 is
satisfied when the walk reaches θn. Here the walk can move both ways with constant
probability but there is a�(1) forward bias. Here we use a monotonicity argument:
the probability of moving forward at each step is
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p(x) = 3(n − x)

3n − 2x − 1

≥ 3(n − x)

3n − 2x

≥ 3(1 − θ)

3 − 2θ
.

If we model this random walk as a walk with constant bias equal to 3(1−θ)
3−2θ we will

find an upper bound on the mixing time since mixing time increases monotonically
with decreasing bias. Further, the waiting time at x = a stochastically dominates
the waiting time at x = b for b ≥ a. The true bias decreases with position so the
walk with constant bias spends more time at the early steps. Thus the position of this
simplified walk is stochastically dominated by the position of the real walk while
the waiting time stochastically dominates the waiting time of the real walk.

3. �3 = [ θ2 n, n] and E3 = [θn, n]. T3 is satisfied when this restricted part of the chain
has mixed to distance ε. Here the bias decreases to zero as the walk approaches 3n/4
but the moving probability is a constant. We show that this walk mixes quickly by
bounding the log-Sobolev constant of the chain.

Showing these three phases complete successfully will give a mixing time bound for the
whole chain.

We now prove in the Appendix that the phases complete successfully with probability
at least 1 − 1/ poly(n):

Lemma 5.4.

P(Phase 1 completes successfully) ≥ 1 − n2δ−1 − 2n−δ.

Lemma 5.5.

P(Phase 2 completes successfully) ≥ 1 − exp

(
−2

3
µθn

)
−
(

4

θn

) 3
2µ

−
2 exp
(−µnδ

4

)

1 − exp(−µ/2) − (q/p)n
δ/2 ,

where µ = 6(1−θ)
3−2θ − 1.

Lemma 5.6.

P(Phase 3 completes successfully) ≥ 1 −
(

θ

3(2 − θ)

)θn/2

.

We can now finally combine to prove our result:

Proof (of Theorem 5.1). The stationary distribution has exponentially small weight in
the tail with lots of zeroes. We show that, provided the number of zeroes is within phase
3, the walk mixes in time O(n log n

ε
). We also show that if the number of zeroes is

initially within phase 1 or 2, after O(n log n) steps the walk is in phase 3 with high
probability. We can work out the distance to the stationary distribution as follows.

Let p f be the probability of failure. This is the sum of the error probabilities in
Lemmas 5.4, 5.5 and 5.6. The key point is that p f = 1/ poly(n). Then after O(n log n

ε
)
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steps (the sum of the number of steps in the 3 phases), the state is equal to (1 − p f )v3 +
p f v

′, where v3 is the state in the phase 3 space and v′ is any other distribution, which
occurs if any one of the phases fails. Since the distance to stationarity in phase 3 is ε,
||v3 − π3|| ≤ ε, where π3 is the stationary distribution on the state space of phase 3. In
Lemma A.12 we show that π3(x) = π(x)/(1 − w), where w = ∑θn/2−1

x=1 π(x). Since
π(x) is exponentially small in this range, w is exponentially small in n. Now use the
triangle inequality to find

||v3 − π || ≤ ||v3 − π3|| + ||π3 − π ||. (5.9)

Since the chain in phase 3 has mixed to ε, the first term is ≤ ε. We can evaluate ||π3−π ||:

||π3 − π || = 1

2

n∑

x=1

||π3(x)− π(x)||

= 1

2

⎛
⎝
θn/2−1∑

x=1

π(x) +
n∑

x=θn/2

(π(x)/(1 − w)− π(x))

⎞
⎠

= 1

2
(w + 1 − (1 − w)) = w.

So now,

||(1 − p f )v3 + p f v
′ − π || = ||(1 − p f )(v3 − π) + p f (v

′ − π)||
≤ (1 − p f )||v3 − π || + p f ||v′ − π ||
≤ (1 − p f )(ε + w) + p f

≤ δ,

where δ = ε+w+ p f . We are free to choose ε: choose it to be 1/n so that δ is 1/ poly(n).
So now the running time to get a distance δ is t = O(n log n). We then apply Lemma
A.14 to obtain the result.

This concludes the proof of Theorem 5.1 so Corollary 5.1 is proved. ��

We have now proven Lemma 2.1 and consequently Corollary 2.1. We now show how
Theorem 2.2 follows.

6. Main Result

We will now show how the mixing time results imply that we have an approximate
2-design.

Proof (Proof of Theorem 2.2). We will go via the 2-norm since this gives a tight bound
when working with the Pauli operators. The supremum can be taken over just physical
states ρ [29]. We write ρ in the Pauli basis as usual (as Eq. 2.3).
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||GW − GH ||2� = sup
ρ

||(GW ⊗ I )(ρ)− (GH ⊗ I )(ρ)||21
≤ 24n sup

ρ
||(GW ⊗ I )(ρ)− (GH ⊗ I )(ρ)||22

= sup
ρ

∣∣∣∣
∣∣∣∣
∑

p1,p2,p3,p4
p1 p2 
=00

γ0(p1, p2, p3, p4)(GW (σp1 ⊗ σp2)⊗ σp3 ⊗ σp4

−GH (σp1 ⊗ σp2)⊗ σp3 ⊗ σp4)

∣∣∣∣
∣∣∣∣
2

2
.

Now, write (for p1 p2 
= 00) GW (
1
2n σp1 ⊗ σp2) = 1

2n

∑
q1,q2

q1q2 
=00
gt (q1, q2; p1, p2)σq1 ⊗

σq2 . We get

sup
ρ

∣∣∣∣
∣∣∣∣
∑

p1,p2,p3,p4,q1,q2
p1 p2 
=00,q1q2 
=00

γ0(p1, p2, p3, p4)

(
gt (q1, q2; p1, p2)− δq1q2δp1 p2

2n(2n + 1)

)

×σq1 ⊗ σq2 ⊗ σp3 ⊗ σp4

∣∣∣∣
∣∣∣∣
2

2

= 24n sup
ρ

∑

p1,p2,p3,p4,q1,q2
p1 p2 
=00,q1q2 
=00

γ 2
0 (p1, p2, p3, p4)

(
gt (q1, q2; p1, p2)− δq1q2δp1 p2

2n(2n + 1)

)2

≤ 24n sup
ρ

∑

p1,p2,p3,p4
p1 p2 
=00

γ 2
0 (p1, p2, p3, p4)ε

2

≤ 24nε2,

where the first equality comes from the orthogonality of the Pauli operators under the
Hilbert-Schmidt inner product and the last inequality comes from the fact that ρ is a
physical state so has tr ρ2 ≤ 1. This proves the result for the diamond norm, Definition
2.5. For the distance measure defined in Definition 2.6, the argument in [10] can be used
together with the 1-norm bound to prove the result. ��

It is unfortunate that there is still a dimension factor remaining in the above proof.
To get a distance ε we have to run the random circuit for O(n(n + log 1/ε)) steps.
However, closeness in the diamond-norm may be too stringent a requirement. After
O(n(n + log 1/ε)) steps, the random circuit gives a 2-design in the measure used by
Dankert et al. (see [10] and Definition 2.6). This is in contrast to the O(n log 1/ε) steps
required by the explicit circuit construction of Dankert et al.

7. Conclusions

We have proved tight convergence results for the first two moments of a random circuit.
We have used this to show that random circuits are efficient approximate 1- and 2-unitary
designs. Our framework readily generalises to k-designs for any k and the next step in
this research is to prove that random circuits give approximate k-designs for all k.

We have shown that, provided the random circuit uses gates from a universal gate set
that is also universal on U (4), the circuit is still an efficient 2-design. We also see that the
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random circuit with gates chosen uniformly from U (4) is the most natural model. We
note that the gates from U (4) can be replaced by gates from any approximate 2-design
on two qubits without any change to the asymptotic convergence properties.

One application of this work is to give an efficient method of decoupling two quantum
systems by applying a random unitary from a 2-design to one system and then discarding
part of it. This technique is used in [2] to construct a variety of encoding circuits for
tasks in quantum Shannon theory; thus, we (like [10]) reduce the encoding complexity
in [2] (and related works, such as [21]) to O(n2). Unfortunately, the decoding circuits
still remain inefficient.

An algorithmic application of random circuits was given in [19], where they were used
to construct a new class of superpolynomial quantum speedups. In that paper, random cir-
cuits of length O(n3) were used in order to guarantee that they were
so-called “dispersing” circuits. Our results immediately imply that circuits of length
O(n2)would instead suffice. We believe that this could be further improved with a spec-
ialised argument, since [19] assumed that the input to the random circuit was always a
computational basis state.

Another potential application of random circuits is to model the evolution of black
holes [22]. In Ref. [22], they conjecture that short random local quantum circuits are
approximately 2-designs, and thus can be used for decoupling quantum systems (as
in [2]). This, in turn, is used to make claims about the rate at which black holes leak
information. While our model differs from that of Ref. [22] in that they consider near-
est-neighbour interactions and we do not, our techniques and results could be readily
extended to cover the case they consider.

Finally, random circuits are interesting physical models in their own right. The orig-
inal purpose of [26] was to answer the physical question of how quickly entangle-
ment grows in a system with random two party interactions. Lemma 2.1(i) shows that
O(n(n + log 1/ε)) steps suffice (in contrast to O(n2(n + log 1/ε)) which they prove) to
give almost maximal entanglement in such a system.
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A. Appendix

A.1. Permutation operators. The following theorems about permutation operators will
be used repeatedly.

Lemma A.1. Let C be a cycle of length c in Sc. Then

tr (C (A1 ⊗ A2 ⊗ . . .⊗ Ac)) = tr
(

AC(1)AC◦2(1)AC◦3(1) . . . A1
)
.

Proof. We have

tr (C (A1 ⊗ A2 ⊗ . . .⊗ Ac)) =
∑

i1,i2,...,ic

〈i1i2 . . . ic|C (A1 ⊗ A2 ⊗ . . .⊗ Ac) |i1i2 . . . ic〉

=
∑

i1,i2,...,ic

〈i1|AC(1)|iC(1)〉〈i2|AC(2)|iC(2)〉

. . . 〈ic|AC(c)|iC(c)〉
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=
∑

i1,i2,...,ic

〈i1|AC(1)|iC(1)〉〈iC(1)|AC◦2(1)|iC◦2(1)〉

. . . 〈iC◦c−1(1)|A1|i1〉
since C◦c(1) = 1. Evaluate the sum using the resolution of the identity to get the
result. ��

With this we can work out the Pauli expansion of the swap operator:

Lemma A.2. The swap operator F on two d dimensional systems can be written as

1

d

∑

p

σp ⊗ σp,

where {σp} form a Hermitian orthogonal basis with tr σ 2
p = d.

Proof. Expand F in the basis and use Lemma A.1:

tr σp ⊗ σqF = tr σpσq

=
{

d p = q
0 otherwise.

The given sum has the correct coefficients in the basis, therefore 1
d

∑
p σp ⊗σp = F . ��

A.2. Zero chain mixing time proofs.

A.2.1. Asymmetric simple random walk We will use some facts about asymmetric sim-
ple random walks, i.e. a random walk on a 1D line with probability p of moving right
at each step and probability q = 1 − p of moving left.

The position of the walk after k steps is tightly concentrated around k(p − q):

Lemma A.3. Let Xk be the random variable giving the position of a random walk after k
steps starting at the origin with probability p of moving right and probability q = 1− p
of moving left. Let µ = p − q. Then for any η > 0,

P(Xk ≥ µk + η) ≤ exp

(
−η

2

2k

)

and

P(Xk ≤ µk − η) ≤ exp

(
−η

2

2k

)
.

Proof. The standard Chernoff bound for 0/1 variables Ỹi gives, with Ỹi equal to 1 with
probability p and for Yk =∑k

i=1 Ỹi ,

P(Yk ≥ kp + η) ≤ exp

(
−2η2

k

)
,

P(Yk ≤ kp − η) ≤ exp

(
−2η2

k

)
.

For our case, set Ỹi = 2X̃i − 1 to give the desired result. ��
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This result is for a walk with constant bias. We will need a result for a walk with
varying (but bounded from below) bias:

Lemma A.4. Let Xk be the random variable giving the position of a random walk after
k steps starting at the origin with probability pi ≥ p of moving right and probability
qi ≤ p of moving left at step i . Let µ = p − (1 − p). Then for any η > 0,

P(Xk ≥ µk + η) ≤ exp

(
−η

2

2k

)

and

P(Xk ≤ µk − η) ≤ exp

(
−η

2

2k

)
.

Proof. Let Ỹi be a random variable equal to 1 with probability p and 0 with probability
1 − p. Then let Z̃i be a random variable equal to 1 with probability pi and 0 with
probability 1 − pi . Let Yk =∑k

i=1 Ỹi and Zk =∑k
i=1 Z̃i . Then following the standard

Chernoff bound derivation (for λ > 0),

P(Zk ≥ kp + η) = P
(

eλZk ≥ eλ(kp+η)
)

≤ eλ(kp+η)

EeλZk

≤ eλ(kp+η)

EeλYk

≤ exp

(
−2η2

k

)
.

We can then, as above, set Z̃i = 2X̃i − 1. The calculation is similar for the bound on
P(Xk ≤ µk − η). ��

From Lemma A.3 we can prove a result about how often each site is visited. If the
walk runs for t steps the walk is at position tµ with high probability so we might expect
from symmetry that each site will have been visited about 1/µ times. Below is a weaker
concentration result of this form but is strong enough for our purposes. It says that the
amount of time spent ≤ x is about x/µ.

Lemma A.5. For γ > 2 and integer x > 0,

P

( ∞∑

k=1

I(Xk ≤ x) ≥ γ x/µ

)
≤ 2 exp

(
−µx(γ − 2)

2

)
,

where I is the indicator function.

Proof. Let Yk = I(Xk ≤ x). From Lemma A.3,

P(Yk = 0) ≤ exp

(
− (kµ− x)2

2k

)
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for k ≤ x/µ and

P(Yk = 1) ≤ exp

(
− (kµ− x)2

2k

)

for k ≥ x/µ.
Then the quantity to evaluate is

P

( ∞∑

k=1

Yk ≥ γ x/µ

)
.

We use a standard trick to split this into two mutually exclusive possibilities and then
bound the probabilities separately. Write

P

( ∞∑

k=1

Yk ≥ γ x/µ

)

= P

⎛
⎝
( ∞∑

k=1

Yk ≥ γ x/µ

)⋂
⎛
⎝
γ x/µ⋂

j=1

[
Y j = 1

]
⎞
⎠
⎞
⎠

+ P

⎛
⎝
( ∞∑

k=1

Yk ≥ γ x/µ

)⋂
⎛
⎝
γ x/µ⋃

j=1

[
Y j = 0

]
⎞
⎠
⎞
⎠ . (A.1)

We can bound the first term:

P

⎛
⎝
( ∞∑

k=1

Yk ≥ γ x/µ

)⋂
⎛
⎝
γ x/µ⋂

j=1

[
Y j = 1

]
⎞
⎠
⎞
⎠ = P

⎛
⎝
γ x/µ⋂

k=1

Yk = 1

⎞
⎠

≤ P
(
Yγ x/µ = 1

)

≤ exp

(
−µx(γ − 1)2

2γ

)

≤ exp

(
−µx(γ − 2)

2

)
.

The second term is done similarly:

P

⎛
⎝
( ∞∑

k=1

Yk ≥ γ x/µ

)⋂
⎛
⎝
γ x/µ⋃

j=1

[
Y j = 0

]
⎞
⎠
⎞
⎠ ≤ P

⎛
⎜⎝

∞⋃

k= γ x
µ

+1

[Yk = 1]

⎞
⎟⎠

≤
∞∑

k= γ x
µ

+1

P (Yk = 1)

≤
∞∑

k= γ x
µ

+1

exp

(
− (kµ− x)2

2k

)

≤ exp

(
−µx(γ − 2)

2

)
.
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The last fact we need about asymmetric simple random walks is a bound on the proba-
bility of going backwards. If p > q then we expect the walk to go right in the majority
of steps. The probability of going left a distance a is exponentially small in a. This is a
well known result, often stated as part of the gambler’s ruin problem:

Lemma A.6 (see e.g. [17]). Consider an asymmetric simple random walk that starts
at a > 0 and has an absorbing barrier at the origin. The probability that the walk
eventually absorbs at the origin is 1 if p ≤ q and (q/p)a otherwise.

This result is for infinitely many steps. If we only consider finitely many steps, the
probability of absorption must be at most this.

A.2.2. Waiting time From above we saw that the probability of moving is at least 2x/5n
when at position x . The length of time spent waiting at each step is therefore stochas-
tically dominated by a geometric distribution with parameter 2x/5n. The following
concentration result will be used to bound the waiting time (in our case β = 2/5):

Lemma A.7. Let the waiting time at each site be W (x) ∼ Geo (βx/n), the total waiting
time W =∑t

x=1 W (x) and t ′ = n ln t
β

. Then

P(W ≥ Ct ′) ≤ 2t (1−C)/2.

Proof. By Markov’s inequality for λ > 0,

P(W ≥ Ct ′) ≤ EeλW

eλCt ′ .

The W (x) are independent so

EeλW =
t∏

x=1

EeλW (x).

Summing the geometric series we find

EeλW (x) =
βx
n

e−λ − 1 + βx
n

,

provided eλ < 1
1− βx

n

for all 1 ≤ x ≤ t . Therefore eλ is of the form 1
1− αβ

n

, where

0 < α < 1. With this,

EeλW (x) = x

x − α

and

EeλW = t !�(1 − α)

�(t + 1 − α)
.

We are free to choose α within its range to optimise the bound. However, for simplicity,
we will choose α = 1/2. From Lemma A.13,

EeλW ≤ 2
√

t .

The result follows, using the inequality 1 − x ≤ e−x . ��
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A.2.3. Phase 1 Here we prove that phase 1 completes successfully with high probability.
The bias here is large so the walk moves right every time with high probability:

Lemma A.8. The probability that the accelerated chain moves right at each step, start-
ing from x = 1 for t steps, is at least

1 − t2/n.

Proof. The probability of moving right at each step is

t∏

x=1

3(n − x)

3n − 2x − 1
= (n − 2)(n − 3) . . . (n − t)

(n − 5/3)(n − 7/3) . . . (n − (2t + 1)/3)

≥ (1 − 2/n)(1 − 3/n) . . . (1 − t/n)

≥ (1 − t/n)t ≥ 1 − t2/n.

��
Let t = nδ . Provided δ < 1/2 this probability is close to one. Therefore, with high
probability, the walk moves to nδ in nδ steps. Using Lemma A.7 the waiting time can
be bounded:

Lemma A.9. Let W (1) be the waiting time during phase 1. Let H be the event that the
walk moves right at each step. Then

P
(

W (1) ≥ Ct ′|H
)

≤ 2nδ(1−C)/2, (A.2)

where t ′ = 5δn ln n
2 .

Proof. This follows directly from Lemma A.7, since each site is hit exactly once. ��
We now combine these two lemmas to prove that phase 1 completes successfully with
high probability:

Proof (Proof of Lemma 5.4). In Lemma A.8, we show that in nδ accelerated steps, the
walk moves right at each step with probability ≥ 1 − n2δ−1. Call this event H . Then
P(H) ≥ 1 − n2δ−1. Lemma A.9 shows that the waiting time W (1) is bounded with high
probability (choosing C = 3):

P(W (1) ≤ 15nδ ln n/2|H) ≥ 1 − 2n−δ.

Then we can bound the probability of phase 1 completing successfully:

P(Phase 1 completes successfully) ≥ P(H ∩ W (1) ≤ 15nδ ln n/2)

= P(H)P(W (1) ≤ 15nδ ln n/2|H)
≥ (1 − n2δ−1)(1 − 2n−δ)
≥ 1 − n2δ−1 − 2n−δ.

��
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A.2.4. Phase 2 Phase 2 starts at nδ/2 and finishes when the walk has reached θn for
some constant 0 < θ < 3/4. We show that, with high probability, this also takes time
O(n log n). The probability of moving right during this phase is at least p = 3(1−θ)

3−2θ . We
first define some constants that we will derive bounds in terms of. Let γ be a constant
> 2. Let µ = p − (1 − p) and µ̃ = µ/γ . Finally let s = µ̃t for some t (which will be
the number of accelerated steps). Then, with high probability, the walk will have passed
s after t steps:

Lemma A.10. Let Xt be the position of the walk at accelerated step t, where X0 = nδ .
Then

P(Xt ≤ s) ≤ exp(−µ2t (1 − 1/γ )2/2).

Proof. Let X ′
t = Xt − nδ . Then from Lemma A.4,

P(X ′
t ≤ µt − η) ≤ exp

(
−η

2

2t

)
.

Now let η = µt − s and use

P(Xt ≤ s) = P(X ′
t ≤ s − nδ)

≤ P(X ′
t ≤ s)

to complete the proof. ��
We now prove a bound on the waiting time:

Lemma A.11. Let W (2) be the waiting time in phase 2. Then, assuming the walk does
not go back beyond nδ/2,

P
(

W (2) ≥ 15n ln s

µ

)
≤ (4/s)3/2µ +

2 exp
(−µnδ

4

)

1 − exp
(−µ

2

) . (A.3)

Proof. Let Wk ∼ Geo
(

2Xk
5n

)
, where Xk is the position of the walk at accelerated step

k (X0 = nδ). We want to bound (w.h.p.) the waiting time W (2) = ∑t
k=1 Wk of t steps

of the accelerated walk.
Define the event H to be

H =
⎧
⎨
⎩
⋂

x≥nδ/2

[ ∞∑

k=1

I(Xk ≤ x) ≤ x/µ̃

]⎫⎬
⎭ . (A.4)

If H occurs, no sites have been hit too often and the walk has not gone back further than
nδ/2. It is important that we also use the restriction that Xk ≥ nδ/2 because the waiting
time grows the longer the walk moves back. However, it is very unlikely that the walk
will go backwards (even to nδ/2).

We now define some more notation to bound the waiting time. Let X = (X1, X2, . . . , Xt )

be a tuple of positions and let Nx (X) be the number of times that x appears in X and let
N(X) = (N1(X), N2(X), . . . , Nn(X)). Then we have

∑
x Nx (X) = t .
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As we said above, the waiting time at x = a stochastically dominates the waiting time
at x = b for b ≥ a. In other words,

Wk � Wk′ if Xk ≤ Xk′ , (A.5)

where X � Y means that X stochastically dominates Y . Now write the waiting time for
all steps:

W (2)(X) =
t∑

k=1

Wk

=
∑

x

Nx (X)∑

h=1

Wh(x), (A.6)

where Wh(x) ∼ Geo
( 2x

5n

)
.

If event H occurs, we can put some bounds on Nx . We find that, for all x ≥ nδ/2,

x∑

y=nδ/2

Ny(X) ≤ x/µ̃ (A.7)

and Nx (X) = 0 for x < nδ/2. Now let Xm be such that Nnδ/2(Xm) = nδ

2µ̃ and Nx (Xm) =
1/µ̃ for x > nδ/2. Then

x∑

y=nδ/2

Ny(Xm) = x/µ̃. (A.8)

Now we introduce the relation �:

Definition A.1. Let x and y be n-tuples. Then x � y if

k∑

i=1

xi ≤
k∑

i=1

yi (A.9)

for all 1 ≤ k ≤ n with equality for k = n.

Note that this is like majorisation, except the elements of the tuples are not sorted. Using
this, we find that N(X) � N(Xm). (Using

∑
y Ny(X) =∑y Ny(X′) = t for all X,X′.)

If we combine Eqs. A.5 and A.6 we find that W (2)(X) � W (2)(X′) if N(X) � N(X′).
Roughly speaking, this is simply saying that the waiting time is larger if the earlier sites
are hit more often. But since for all X that satisfy H , X � Xm , we have W (2)(X) �
W (2)(Xm) provided H occurs. We will simplify further by noting that Xm � X0, where
Nx (X0) = 1/µ̃ for 1 ≤ x ≤ µ̃t = s and zero elsewhere. Therefore

P
(

W (2)(X) ≥ 5Cn ln s

2µ̃

∣∣∣∣H
)

≤ P
(

W (2)(X0) ≥ 5Cn ln s

2µ̃

)
.

We can bound this by applying Lemma A.7. Let Wh =∑s
x=1 Wh(x). From Lemma A.7,

P(Wh ≥ Ct ′) ≤ 2s
1−C

2 , (A.10)



298 A. W. Harrow, R. A. Low

where t ′ = 5n ln s
2 . However, we want a bound on P

(∑1/µ̃
h=1 Wh ≥ Ct ′/µ̃

)
. The same

reasoning as in Lemma A.7 bounds this as

P

⎛
⎝

1/µ̃∑

h=1

Wh ≥ Ct ′/µ̃

⎞
⎠ ≤
(
2s

1−C
2

)1/µ̃
. (A.11)

Therefore

P
(

W (2)(X0) ≥ 5Cn ln s

2µ̃

)
≤ 21/µ̃s

(1−C)/2
µ̃ . (A.12)

To complete the proof, we just need to find P(Hc). We can bound it using the union
bound and Lemma A.5:

P(Hc) = P

⎛
⎝

n⋃

x=nδ/2

[ ∞∑

k=1

I(Xk ≤ x) > x/µ̃

]⎞
⎠

≤
n∑

x=nδ/2

P

( ∞∑

k=1

I(Xk ≤ x) ≥ x/µ̃

)

≤
n∑

x=nδ/2

2 exp

(−µx(γ − 2)

2

)

≤
∞∑

x=nδ/2

2 exp

(−µx(γ − 2)

2

)

=
2 exp
(−µnδ(γ−2)

4

)

1 − exp
(−µ(γ−2)

2

) .

Now, for any events A and B,

P(A) = P(A ∩ B) + P(A ∩ Bc)

= P(A|B)P(B) + P(A ∩ Bc)

≤ P(A|B) + P(Bc),

and set C = 2 and γ = 3 to obtain the result. ��
We now combine these two lemmas to prove that phase 2 completes successfully with
high probability:

Proof (Proof of Lemma 5.5). Phase 2 can fail if:

– The walk does not reach θn. The probability of this is bounded by Lemma A.10:

P(Xt ≤ θn) ≤ exp

(
−2

3
µθn

)
.

This follows from setting t = 3θn
µ

and γ = 3.
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– The waiting time is too long. This probability is bounded by Lemma A.11:

P
(

W (2) ≥ 15n ln(θn)

µ

)
≤
(

4

θn

) 3
2µ

+
2 exp
(−µnδ

4

)

1 − exp(−µ/2) + (q/p)n
δ/2.

– The walk gets back to nδ/2. This is bounded by Lemma A.6:

P
(
Walk gets to nδ/2

) ≤ (q/p)n
δ/2 .

So, using the union bound we can bound the overall probability of failure:

P(Phase 2 fails) ≤ exp

(
−2

3
µθn

)
+

(
4

θn

) 3
2µ

+
2 exp
(−µnδ

4

)

1 − exp(−µ/2) + (q/p)n
δ/2 .

A.2.5. Phase 3 This phase starts at θn. We show that this mixes quickly using log-Sobo-
lev arguments.

Lemma A.12. The zero chain on the restricted state space x ∈ [m, n], where m = θn/2
for 0 ≤ θ ≤ 3/4, has mixing time O

(
n log n

ε

)
.

Proof. We restrict the Markov chain to only run from m by adjusting the holding prob-
ability at m, P(m,m). Construct the chain P ′ with transition matrix

P ′(x, y) =

⎧
⎪⎨
⎪⎩

0 x < m or y < m
1 − P(m,m + 1) x = y = m
P(x, y) otherwise

, (A.13)

where P is the transition matrix of the full zero chain. This chain then has stationary
distribution

π ′(x) =
{
π(x)/(1 − w) m ≤ x ≤ n
0 otherwise

, (A.14)

where w = ∑m−1
x=1 π(x). To see this, first note that the distribution is normalised. We

want to show that

n∑

x=m

P ′(x, y)π ′(x) = π ′(y). (A.15)

When y = m we are required to prove that P ′(m,m)π ′(m) + P ′(m + 1,m)π ′(m +
1) = π ′(m). This follows from the reversibility of the unrestricted zero chain, using
P ′(m,m) = 1 − P(m,m + 1). For y > m, Eq. A.15 is satisfied simply because π(x) is
the stationary distribution of P and related by a constant factor to π ′(x).

We can now prove this final mixing time result, making use of Lemma 4.4. Let Qi be
the chain that uniformly mixes site i . This converges in one step and has a log-Sobolev
constant independent of n; call it ρ1. Let Q be the chain that chooses a site at random
and then uniformly mixes that site. This is the product chain of the Qi so, by Lemma
4.4, has gap 1/n and Sobolev constant ρQ = ρ1/n. We can construct the zero chain for
this and find its Sobolev constant.
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The Sobolev constant is defined (Definition 4.3) in terms of a minimisation over functions
on the state space. For the chain Q we can write

ρQ = inf
φ

f (φ).

If we restrict the infimum to be over functions φ with φ(x) = φ(y) for x and y con-
taining the same number of zeroes then we obtain the Sobolev constant for the zero-Q
chain, ρQ0 , which is the chain which counts the number of zeroes in the full chain Q.
Since taking the infimum over less functions cannot give a smaller value,

ρQ0 ≥ ρQ ≥ ρ1/n.

We can now compare this chain to the zero-P chain. The stationary distributions are the
same. The transition matrix for the zero-Q chain is

Q0(x, y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n+2x
4n y = x

x
4n y = x − 1
3(n−x)

4n y = x + 1
0 otherwise

.

Then construct Q′
0 by restricting the space to only run from m in exactly the same way

as P ′ is constructed from P . Q′
0 has the same stationary distribution as P ′. Now we can

perform the comparison. From Eq. 4.14:

A = max
a≥m

Q′
0(a, a + 1)

P ′(a, a + 1)

= max
a≥m

5(n − 1)

8a
≤ 5

8θ
.

Therefore ρP ′ ≥ 8θρ1
5n . Exactly the same argument applies to show the gap is �(1/n),

so the mixing time is (from Eq. 4.16) O(n log n
ε
). ��

Now we can prove that phase 3 completes successfully with high probability:

Proof (of Lemma 5.6). In Lemma A.12, we show that after O
(
n log n

ε

)
steps the chain

mixes to distance ε. We just need to show that the walk goes back to θn/2 with small
probability. This follows from Lemma A.6.

A.3. Moment generating function calculations. The following lemma is needed in the
moment generating function calculations.

Lemma A.13. For Integer s > 0,

�(s + 1)�(1/2)

�(s + 1/2)
≤ 2

√
s. (A.16)
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Proof. From expanding the � functions, Eq. A.16 becomes

s!2s

(2s − 1)!! = 2 × 4 × 6 × · · · × 2(s − 1)× 2s

1 × 3 × 5 × · · · × (2s − 3)× (2s − 1)

=
s∏

x=1

2x

2x − 1
.

We then proceed by induction.
∏1

x=1
2x

2x−1 = 2 and by the inductive hypothesis

s+1∏

x=1

2x

2x − 1
≤ 2(s + 1)

2(s + 1)− 1
2
√

s.

It is easy to show that 2(s+1)
2(s+1)−1 ≤

√
s+1

s and the result follows. ��

A.4. Mixing times. We find bounds for the mixing time above that are valid with high
probability. Below we turn these into full mixing time bounds.

Lemma A.14. If after O(n log n) steps the state v of a random walk satisfies

||v − π || ≤ δ,

where π is the stationary distribution and δ is 1/poly(n), then the number of steps
required to be at most a distance ε from stationarity is

O
(

n log
n

ε

)
.

Proof. Let s be the slowest mixing initial state. Then, after t = O(n log n) steps we
have at worst the state

(1 − δ)π + δs,

and if we repeat kt times δ becomes δk . So to get a distance ε, k =
⌈

log ε
log δ

⌉
.

Now we evaluate the mixing time:

kt = O(n log n)

⌈
log ε

log δ

⌉
= O(n log n)

⌈
log 1/ε

log 1/δ

⌉

= O(n max(log n, log 1/ε))

= O
(

n log
n

ε

)
.
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Abstract. The first separation between quantum polynomial time and classical
bounded-error polynomial time was due to Bernstein and Vazirani in 1993. They
first showed a O(1) vs. Ω(n) quantum-classical oracle separation based on the
quantum Hadamard transform, and then showed how to amplify this into a nO(1)

time quantum algorithm and a nΩ(log n) classical query lower bound.
We generalize both aspects of this speedup. We show that a wide class of uni-

tary circuits (which we call dispersing circuits) can be used in place of Hadamards
to obtain a O(1) vs. Ω(n) separation. The class of dispersing circuits includes
all quantum Fourier transforms (including over nonabelian groups) as well as
nearly all sufficiently long random circuits. Second, we give a general method for
amplifying quantum-classical separations that allows us to achieve a nO(1) vs.
nΩ(log n) separation from any dispersing circuit.

1 Background

Understanding the power of quantum computation relative to classical computation
is a fundamental question. When we look at which problems can be solved in quan-
tum but not classical polynomial time, we get a wide range: quantum simulation, fac-
toring, approximating the Jones polynomial, Pell’s equation, estimating Gauss sums,
period-finding, group order-finding and even detecting some mildly non-abelian sym-
metries [Sho97, Hal07, Wat01, FIM+03, vDHI03]. However, when we look at what
algorithmic tools exist on a quantum computer, the situation is not nearly as diverse.
Apart from the BQP-complete problems [AJL06], the main tool for solving most of
these problems is a quantum Fourier transform (QFT) over some group. Moreover, the
successes have been for cases where the group is abelian or close to abelian in some
way. For sufficiently nonabelian groups, there has been no indication that the trans-
forms are useful even though they can be computed exponentially faster than classi-
cally. For example, while an efficient QFT for the symmetric group has been intensively
studied for over a decade because of its connection to graph isomorphism, it is still
unknown whether it can be used to achieve any kind of speedup over classical compu-
tation [Bea97].

The first separation between quantum computation and randomized computation
was the Recursive Fourier Sampling problem (RFS) [BV97]. This algorithm had two
components, namely using a Fourier transform, and using recursion. Shortly after this,

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 782–795, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Simon’s algorithm and then Shor’s algorithm for factoring were discovered, and the
techniques from these algorithms have been the focus of most quantum algorithmic
research since [Sim97, Sho97]. These developed into the hidden subgroup framework.
The hidden subgroup problem is an oracle problem, but solving certain cases of it would
result in solutions for factoring, graph isomorphism, and certain shortest lattice vec-
tor problems. Indeed, it was hoped that an algorithm for graph isomorphism could be
found, but recent evidence suggests that this approach may not lead to one [HMR+06].
As a way to understand new techniques, this oracle problem has been very impor-
tant, and it is also one of the very few where super-polynomial speedups have been
found [IMS01, BCvD05].

In comparison to factoring, the RFS problem has received much less attention. The
problem is defined as a property of a tree with labeled nodes and it was proven to be
solvable with a quantum algorithm super-polynomially faster than the best randomized
algorithm. This tree was defined in terms of the Fourier coefficients over Zn

2 . The defini-
tion was rather technical, and it seemed that the simplicity of the Fourier coefficients for
this group was necessary for the construction to work. Even the variants introduced by
Aaronson [Aar03] were still based on the same QFT over Zn

2 , which seemed to indicate
that this particular abelian QFT was a key part of the quantum advantage for RFS.

The main result of this paper is to show that the RFS structure can be generalized
far more broadly. In particular, we show that an RFS-style super-polynomial speedup
is achievable using almost any quantum circuit, and more specifically, it is also true
for any Fourier transform (even nonabelian), not just over Zn

2 . This illustrates a more
general power that quantum computation has over classical computation when using
recursion. The condition for a quantum circuit to be useful for an RFS-style speedup
is that the circuit be dispersing, a concept we introduce to mean that it takes many
different inputs to fairly even superpositions over most of the computational basis.

Our algorithm should be contrasted with the original RFS algorithm. One of the main
differences between classical and quantum computing is so-called garbage that results
from computing. It is important in certain cases, and crucial in recursion-based quan-
tum algorithms because of quantum superpositions, that intermediate computations are
uncomputed and that errors do not compound. The original RFS paper [BV97] avoided
the error issue by using an oracle problem where every quantum state create from it
had the exact property necessary with no errors. Their algorithm could have tolerated
polynomially small errors, but in this paper we relax this significantly. We show that
even if we can only create states with constant accuracy at each level of recursion, we
can still carry through a recursive algorithm which introduces new constant-sized errors
a polynomial number of times.

The main technical part of our paper shows that most quantum circuits can be used to
construct separations relative to appropriate oracles. To understand the difficulty here,
consider two problems that occur when one tries to define an oracle whose output is
related to the amplitudes that result from running a circuit. First, it is not clear how
to implement such an oracle since different amplitudes have different magnitudes, and
only phases can be changed easily. Second, we need an oracle where we can prove
that a classical algorithm requires many queries to solve the problem. If the oracle
outputs many bits, this can be difficult or impossible to achieve. For example, the matrix
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entries of nonabelian groups can quickly reveal which representation is being used. To
overcome these two problems we show that there are binary-valued functions that can
approximate the complex-valued output of quantum circuits in a certain way.

One by-product of our algorithm is related to the Fourier transform of the symmet-
ric group. Despite some initial promise for solving graph isomorphism, the symmetric
group QFT has still not found any application in quantum algorithms. One instance of
our result is the first example of a problem (albeit a rather artificial one) where the QFT
over the symmetric group is used to achieve a super-polynomial speedup.

2 Statement of Results

Our main contributions are to generalize the RFS algorithm of [BV97] in two stages.
First, [BV97] described the problem of Fourier sampling over Zn

2 , which has an O(1)
vs. Ω(n) separation between quantum and randomized complexities. We show that here
the QFT over Zn

2 can be replaced with a QFT over any group, or for that matter with al-
most any quantum circuit. Next, [BV97] turned Fourier sampling into recursive Fourier
sampling with a recursive technique. We will generalize this construction to cope with
error and to amplify a larger class of quantum speedups. As a result, we can turn any of
the linear speedups we have found into superpolynomial speedups.

Let us now explain each of these steps in more detail. We replace the O(1) vs Ω(n)
separation based on Fourier sampling with a similar separation based on a more general
problem called oracle identification. In the oracle identification problem, we are given
access to an oracle Oa : X → {0, 1} where a ∈ A, for some sets A and X with
log |A|, log |X | = Θ(n). Our goal is to determine the identity of a. Further, assume
that we have access to a testing oracle Ta : A → {0, 1} defined by Ta(a

′) = δa,a′ , that
will let us confirm that we have the right answer.1

A quantum algorithm for identifying a can be described as follows: first prepare a
state |ϕa〉 using q queries to Oa, then perform a POVM {Πa′}a′∈A (with

∑
a′ Πa′ ≤ I

to allow for the possibility of a “failure” outcome), using no further queries to Oa. The
success probability is 〈ϕa|Πa|ϕa〉. For our purposes, it will suffice to place a Ω(1)
lower bound on this probability: say that for each a, 〈ϕa|Πa|ϕa〉 ≥ δ for some constant
δ > 0. On the other hand, any classical algorithm trivially requires ≥ log(|A|δ) = Ω(n)
oracle calls to identify a with success probability ≥ δ. This is because each query
returns only one bit of information. In Theorem 9 we will describe how a large class of
quantum circuits can achieve this O(1) vs. Ω(n) separation, and in Theorems 11 and
12 we will show specifically that QFTs and most random circuits fall within this class.

Now we describe the amplification step. This is a variant of the [BV97] procedure
in which making an oracle call in the original problem requires solving a sub-problem
from the same family as the original problem. Iterating this � times turns query com-
plexity q into qΘ(�), so choosing � = Θ(log n) will yield the desired polynomial vs.

1 This will later allow us to turn two-sided into one-sided error; unfortunately it also means that
a non-deterministic Turing machine can find a with a single query to Ta. Thus, while the oracle
defined in BV is a candidate for placing BQP outside PH, ours will not be able to place BQP
outside of NP. This limitation appears not to be fundamental, but we will leave the problem of
circumventing it to future work.



Superpolynomial Speedups Based on Almost Any Quantum Circuit 785

super-polynomial separation. We will generalize this construction by defining an am-
plified version of oracle identification called recursive oracle identification. This is de-
scribed in the next section, where we will see how it gives rise to superpolynomial
speedups from a broad class of circuits.

We conclude that quantum speedups—even superpolynomial speedups—are much
more common than the conventional wisdom would suggest. Moreover, as useful as
the QFT has been to quantum algorithms, it is far from the only source of quantum
algorithmic advantage.

3 Recursive Amplification

In this section we show that once we are given a constant versus linear separation (for
quantum versus classical oracle identification), we are able to amplify this to a super-
polynomial speedup. We require a much looser definition than in [BV97] because the
constant case can have a large error.

Definition 1. For sets A, X , let f : A × X → {0, 1} be a function. To set the scale of
the problem, let |X | = 2n and |A| = 2Ω(n). Define the set of oracles {Oa : a ∈ A} by
Oa(x) = f(a, x), and the states |ϕa〉 = 1√

|X|
∑

x∈X(−1)f(a,x)|x〉. The single-level

oracle identification problem is defined to be the task of determining a given access to
Oa. Let U be a family of quantum circuits, implicitly depending on n. We say that U
solves the single-level oracle identification problem if

|〈a|U |ϕa〉|2 ≥ Ω(1)

for all sufficiently large n and all a ∈ A. In this case, we define the POVM {Πa}a∈A

by Πa = U † |a〉〈a|U .

When this occurs, it means that a can be identified from Oa with Ω(1) success prob-
ability and using a single query. In the next section, we will show how a broad class
of unitaries U (the so-called dispersing unitaries) allow us to construct f for which
U solves the single-level oracle identification problem. There are natural generaliza-
tions to oracle identification problems requiring many queries, but we will not explore
them here.

Theorem 2. Suppose we are given a single-level oracle problem with function f and
unitary U running in time poly(n). Then we can construct a modified oracle problem
from f which can be solved by a quantum computer in polynomial time (and queries),
but requires nΩ(log n) queries for any classical algorithm that succeeds with probability
1
2 + n−o(log n).

We start by defining the modified version of the problem (Definition 3 below), and
describing a quantum algorithm to solve it. Then in Theorem 4 we will show that the
quantum algorithm solves the problem correctly in polynomial time, and in Theorem 6,
we will show that randomized classical algorithms require superpolynomial time to
have a nonnegligible probability of success.
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s∅, b∅

sx, bx

sx unlocks bx: O(x, sx) = bx

sx is a function of the by on the level belowy = (x, x′)

sy, by

x = (x1, ..., xk−1)

x′

Fig. 1. A depth k node at location x = (x1, . . . , xk) is labeled by its secret sx and a bit bx. The
secret sx can be computed from the bits by of its children, and once it is known, the bit bx is
computed from the oracle O(x, sx) = bx. If x is a leaf then it has no secret and we simply have
bx = O(x). The goal is to compute the secret bit b∅ at the root.

The recursive version of the problem simply requires that another instance of the
problem be solved in order to access a value at a child. Figure 1 illustrates the structure
of the problem.

Using the notation from Figure 1, the relation between a secret sx, and the bits by

of its children is given by by = f(sx, x′), where f is the function from the single-
level oracle identification problem. Thus by computing enough of the bits by1 , by2 , . . .
corresponding to children y1, y2, . . ., we can solve the single-level oracle identification
problem to find sx. Of course computing the by will require finding the secret strings
sy , which requires finding the bits of their children and so on, until we reach the bottom
layer where queries return answer bits without the need to first produce secret strings.

Definition 3. A level-� recursive oracle identification problem is specified by X, A and
f from a single-level oracle identification problem (Definition 1), any function s : ∅ ∪
X ∪ X × X ∪ . . . ∪ X�−1 → A, and any final answer b∅ ∈ {0, 1}. Given these
ingredients, an oracle O is defined which takes inputs in

�−1⋃

k=0

[
Xk × A

]
∪ X�

and to return outputs in {0, 1, FAIL}. On inputs x1, . . . , xk ∈ X, a ∈ A with 1 ≤ k <
�, O returns

O(x1, . . . , xk, a) = f(s(x1, . . . , xk−1), xk) when a = s(x1, . . . , xk) (1)

O(x1, . . . , xk, a) = FAIL when a �= s(x1, . . . , xk). (2)

If k = 0, then O(s(∅)) = b∅ and O(a) = FAIL if a �= s(∅). When k = �,

O(x1, . . . , x�) = f(s(x1, . . . , x�−1), x�).

The recursive oracle identification problem is to determine b∅ given access to O.
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Note that the function s gives the values sx in Figure 1. These values are actually de-
fined in the oracle and can be chosen arbitrarily at each node. Note also that the or-
acle defined here effectively includes a testing oracle, which can determine whether
a = s(x1, . . . , xk) for any a ∈ A, x1, . . . , xk ∈ X with one query. (When x =
(x1, . . . , xk), we use s(x1, . . . , xk) and sx interchangeably.) A significant difference
between our construction and that of [BV97] is that the values of s at different nodes
can be set completely independently in our construction, whereas [BV97] had a com-
plicated consistency requirement.

The algorithm. Now we turn to a quantum algorithm for the recursive oracle identi-
fication problem. If a quantum computer can identify a with one-sided2 error 1 − δ
using time T and q queries in the non-recursive problem, then we will show that the
recursive version can be solved in time O((q log 1/δ

δ )�T ). For concreteness, suppose that
|ϕa〉 = 1√

|X|
∑

x∈X(−1)f(a,x)|x〉, so that q = 1; the case when q > 1 is an easy, but

tedious, generalization. Suppose that our identifying quantum circuit is U , so a can be
identified by applying the POVM {Πa′}a′∈A with Πa′ = U † |a′〉〈a′| U to the state |ϕa〉.

The intuitive idea behind our algorithm is as follows: At each level, we find s(x1, . . . ,
xk) by recursively computing s(x1, . . . , xk+1) for each xk+1 (in superposition) and
using this information to create many copies of |ϕs(x1,...,xk)〉, from which we can ex-
tract our answer. However, we need to account for the errors carefully so that they do
not blow up as we iterate the recursion. In what follows, we will adopt the conven-
tion that Latin letters in kets (e.g. |a〉, |x〉, . . .) denote computational basis states, while
Greek letters (e.g. |ζ〉, |ϕ〉, . . .) are general states that are possibly superpositions over
many computational basis states. Also, we let the subscript (k) indicate a dependence
on (x1, . . . , xk). The recursive oracle identification algorithm is as follows:

Algorithm: FIND
Input: |x1, . . . , xk〉|0〉 for k < �
Output: a(k) = s(x1, . . . , xk) up to error ε = (δ/8)2, where δ is the constant from the oracle. This means

|x1, . . . , xk〉
[√

1 − ε(k)|0〉|a(k)〉|ζ(k)〉 +
√

ε(k)|1〉|ζ ′
(k)〉

]
, where ε(k) ≤ ε and |ζ(k)〉 and |ζ ′

(k)〉 are arbitrary.

(We can assume this form without loss of generality by absorbing phases into |ζ(k)〉 and |ζ ′
(k)〉.)

1. Create the superposition 1√
|X|

∑
xk+1∈X |xk+1〉.

2. If k + 1 < � then let a(k+1) = FIND(x1, . . . , xk+1) (with error ≤ ε), otherwise a(k+1) = ∅.
3. Call the oracle O(x1, . . . , xk+1, a(k+1)) to apply the phase (−1)f(s(x1,...,xk),xk+1) using the key a(k+1).
4. If k + 1 < � then call FIND† to (approximately) uncompute a(k+1).
5. We are now left with |ϕ̃(k)〉, which is close to |ϕs(x1,...,xk)〉.

Repeat steps 1–4 m = 4
δ ln 8

δ times to obtain |ϕ̃(k)〉⊗m

6. Coherently measure {Πa} on each copy and test the results (i.e. apply U , test the result, and apply U †).
7. If any tests pass, copy the correct a(k) to an output register, along with |0〉 to indicate success.

Otherwise put a |1〉 in the output to indicate failure.
8. Let everything else comprise the junk register |ζ(k)〉.

Theorem 4. Calling FIND on |0〉 solves the recursive oracle problem in quantum poly-
nomial time.

2 One-sided error is a reasonable demand given our access to a testing oracle. Most of these
results go through with two-sided error as well, but for notational simplicity, we will not explore
them here.
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Proof. The proof is by backward induction on k; we assume that the algorithm returns
with error ≤ ε for k + 1 and prove it for k. The initial step when k = � is trivial since
there is no need to compute a�+1, and thus no source of error. If k < �, then assume
that correctness of the algorithm has already been proved for k + 1. Therefore Step 2
leaves the state

1√
|X |

∑

xk+1∈X

|xk+1〉
[√

1 − ε(k+1)|0〉|a(k+1)〉|ζ(k+1)〉 +
√

ε(k+1)|1〉|ζ′
(k+1)〉

]
.

In Step 3, we assume for simplicity that the oracle was called conditional on the success
of Step 2. This yields

|ψ′
(k)〉 :=

1√
|X|

∑

xk+1∈X

|xk+1〉
[
(−1)f(a(k),xk+1)

√
1 − ε(k+1)|0〉|a(k+1)〉|ζ(k+1)〉 +

√
ε(k+1)|1〉|ζ ′

(k+1)〉
]
.

Now define the state |ψ(k)〉 by

|ψ(k)〉 :=
1√
|X|

∑

xk+1∈X

(−1)f(a(k),xk+1)|xk+1〉
[√

1 − ε(k+1)|0〉|a(k+1)〉|ζ(k+1)〉 +
√

ε(k+1)|1〉|ζ ′
(k+1)〉

]
.

Note that

〈ψ′
(k)|ψ(k)〉 =

1

|X |
∑

xk+1∈X

(
1 − ε(k+1) + (−1)f(a(k),xk+1)ε(k+1)

)
.

This quantity is real and always ≥ 1−2ε(k+1) ≥
√

1 − 4ε by the induction hypothesis.
Let

|φ(k)〉 :=
1

|X |
∑

xk+1∈X

(−1)f(a(k),xk+1)|xk+1〉|0〉.

Note that FIND†|x1, . . . , xk, ψ(k)〉 = |x1, . . . , xk, φ(k)〉. Thus there exists ε(k) such
that applying FIND† to |x1, . . . , xk〉|ψ′

(k)〉 yields

|x1, . . . , xk〉 ⊗
[√

1 − 4ε(k)|φ(k)〉 +
√

4ε(k)|φ′
(k)〉

]
,

where 〈φ(k)|φ′
(k)〉 = 0 and ε(k) ≤ ε.

We now want to analyze the effects of measuring {Πa} when we are given the state

|ϕ(k)〉 :=
√

1 − 4ε(k)|φ(k)〉 +
√

4ε(k)|φ′
(k)〉

instead of |φ(k)〉. If we define ‖M‖1=tr
√

M †M for a matrix M , then ‖
∣∣ϕ(k)

〉〈
ϕ(k)

∣∣−∣∣φ(k)

〉〈
φ(k)

∣∣ ‖1 = 4
√

ε(k) [FvdG99]. Thus

〈ϕ(k)|Πa(k)
|ϕ(k)〉 ≥ 〈φ(k)|Πa(k)

|φ(k)〉 − 4
√

ε(k) ≥ δ − 4
√

ε(k) ≥ δ/2.

In the last step we have chosen ε = (δ/8)2.
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Finally, we need to guarantee that with probability ≥ 1− ε at least one of the tests in
Step 6 passes. After applying U and the test oracle to |ϕ(k)〉, we have ≥

√
δ/2 overlap

with a successful test and ≤
√

1 − δ/2 overlap with an unsuccessful test. When we
repeat this m times, the amplitude in the subspace corresponding to all tests failing is
≤ (1 − δ/2)m/2 ≤ e−mδ/4. If we choose m = (2/δ) ln(1/ε) = (4/δ) ln(8/δ) then the
failure amplitude will be ≤ √

ε, as desired.
To analyze the time complexity, first note that the run-time is O(T ) times the number

of queries made by the algorithm, and we have assumed that T is polynomial in n.
Suppose the algorithm at level k requires Q(k) queries. Then steps 2 and 4 require
mQ(k + 1) queries each, steps 3 and 6 require m queries each and together Q(k) =
2mQ(k+1)+2m. The base case is k = �, for which Q(�) = 0, since there are no secret
strings to calculate for the leaves. The total number of queries required for the algorithm
is then Q(0) ≈ (2m)2�. If we choose � = log n the quantum query complexity will thus
be n2 log 2m = nO(1) and the quantum complexity will be polynomial in n compared
with the nΩ(log n) lower bound.

This concludes the demonstration of the polynomial-time quantum algorithm. Now we
turn to the classical nΩ(log n) lower bound. Our key technical result is the following
lemma:

Lemma 5. Define the recursive oracle identification problem as above, with a function
f : A× X → {0, 1} and a secret s : ∅ ∪X ∪X × X ∪ . . .∪X�−1 �→ A encoded in an
oracle O. Fix a deterministic classical algorithm that makes ≤ Q queries to O. Then if
s and ANS are chosen uniformly at random, the probability that ANS is output by the
algorithm is

≤ 1

2
+ max

(
Q

|A|1/3 − Q
, Q

(
log |A|

3

)−�
)

.

Using Yao’s minimax principle and plugging in |A| = 2αn, � = log n and Q = no(log n)

readily yields.

Theorem 6. If log |A| = nΩ(1) and � = Ω(log n), then any randomized classical algo-
rithm using Q = no(log n) queries will have 1

2 + n−Ω(log n) probability of successfully
outputting ANS.

Proof (of Lemma 5). Let T = ∅ ∪ X ∪ . . . ∪ X� denote the tree on which the oracle is
defined. We say that a node x ∈ T has been hit by the algorithm if position x has been
queried by the oracle together with the correct secret, i.e. O(s(x), x) has been queried.
The only way to find to obtain information about ANS is for the algorithm to query ∅
with the appropriate secret; in other words, to hit ∅.

For x, y ∈ T we say that x is an ancestor of y, and that y is a descendant of x, if
y = x × z for some z ∈ T . If z ∈ X then we say that y is a child of x and that x is a
parent of y. Now define S ⊂ T to be the set of all x ∈ T such that x has been hit but
none of x’s ancestors have been. Also define a function d(x) to be the depth of a node
x; i.e. for all x ∈ Xk, d(x) = k. We combine these definitions to declare an invariant

Z =
∑

x∈S

(
log |A|

3

)−d(x)
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The key properties of Z we need are that:

1. Initially Z = 0.
2. If the algorithm is successful then it terminates with Z = 1.
3. Only oracle queries change the value of Z .
4. Querying a leaf can add at most (log |A|/3)−� to Z .
5. Querying an internal node (i.e. not a leaf) can add at most 2/(|A|1/3 − Q) to EZ ,

where E indicates the expectation over random choices of s.

Combining these facts yields the desired bound.
Properties 1–4 follow directly from the definition (with the inequality in property

4 because it is possible to query a node that has already been hit). To establish prop-
erty 5, suppose that the algorithm queries node x ∈ T and that it has previously hit
k of x’s children. This gives us some partial information about s(x). We can model
this information as a partition of A into 2k disjoint sets A1, . . . , A2k (of which some
could be empty). From the k bits returned by the oracle on the k children of x we have
successfully queried, we know not only that s(x) ∈ A, but that s(x) ∈ Ai for some
i ∈ {1, . . . , 2k}.

We will now divide the analysis into two cases. Either k ≤ 1
3 log |A| or k > 1

3 log |A|.
We will argue that in the former case, |Ai| is likely to be large, and so we are unlikely so
successfully guess s(x), while in the latter case even a successful guess will not increase
Z . The latter case (k > 1

3 log |A|) is easier, so we consider it first. In this case, Z only
changes if x is hit in this step and neither x nor any of its ancestors have been previously
hit. Then even though hitting x will contribute (log |A|/3)−d(x) to Z , it will also remove
the k children from S (as well as any other descendants of x), which will decrease Z
by at least k(log |A|/3)−d(x)−1 > (log |A|/3)−d(x), resulting in a net decrease of Z .

Now suppose that k ≤ 1
3 log |A|. Recall that our information about s(x) can be

expressed by the fact that s(x) ∈ Ai for some i ∈ {1, . . . , 2k}. Since the values of s
were chosen uniformly at random, we have Pr(Ai) = |Ai|/|A|. Say that a set Ai is bad
if |Ai| ≤ |A|2/3/2k. Then for a particular bad set Ai, Pr(Ai) ≤ |A|−1/32−k. From the
union bound, we see that the probability that any bad set is chosen is ≤ |A|−1/3.

Assume then that we have chosen a good set Ai, meaning that conditioned on the
values of the children there are |Ai| ≥ |A|2/3/2k ≥ |A|1/3 possible values of s(x).
However, previous failed queries at x may also have ruled out specific possible values of
x. There have been at most Q queries at x, so there are ≥ |A|1/3 −Q possible values of
s(x) remaining. (Queries to any other nodes in the graph yield no information on s(x).)
Thus the probability of hitting x is ≤ 1/(|A|1/3 − Q) if we have chosen a good set.
We also have a ≤ |A|−1/3 probability of choosing a bad set, so the total probability of
hitting x (in the k ≤ 1

3 log |A| case) is ≤ |A|−1/3 +1/(|A|1/3 −Q) ≤ 2/(|A|1/3 −Q).
Finally, hitting x will increase Z by at most one, so the largest possible increase of
EZ when querying a non-leaf node is ≤ 2/(|A|1/3 − Q). This completes the proof of
property 5 and thus the Lemma.

4 Dispersing Circuits

In this section we define dispersing circuits and show how to construct an oracle prob-
lem with a constant versus linear separation from any such circuit. In the next sections
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we will show how to find dispersing circuits. Our strategy for finding speedups will be
to start with a unitary circuit U which acts on n qubits and has size polynomial in n. We
will then try to find an oracle for which U efficiently solves the corresponding oracle
identification problem. Next we need to define a state |ϕa〉 that can be prepared with
O(1) oracle calls and has Ω(1) overlap with U †|a〉. This is accomplished by letting
|ϕa〉 be a state of the form 2−n/2

∑
x ±|x〉. We can prepare |ϕa〉 with only two oracle

calls (or one, depending on the model), but to guarantee that |〈a|U |ϕa〉| can be made
large, we will need an additional condition on U . For any a ∈ A, U †|a〉 should have
amplitude that is mostly spread out over the entire computational basis. When this is
the case, we say that U is dispersing. The precise definition is as follows:

Definition 7. Let U be a quantum circuit on n qubits. For 0 < α, β ≤ 1, we say that U
is (α, β)-dispersing if there exists a set A ⊆ {0, 1}n with |A| ≥ 2αn and

∑

x∈{0,1}n

|〈a|U |x〉| ≥ β2
n
2 . (3)

for all a ∈ A.

Note that the LHS of (3) can also be interpreted as the L1 norm of U †|a〉.
The speedup in [BV97] uses U = H⊗n, which is (1,1)-dispersing since∑
x |〈a|H⊗n|x〉| = 2n/2 for all a. Similarly the QFT over the cyclic group is (1,1)-

dispersing.3 Nonabelian QFTs do not necessarily have the same strong dispersing prop-
erties, but they satisfy a weaker definition that is still sufficient for a quantum speedup.
Suppose that the measurement operator is instead defined as Πa = U(|a〉〈a| ⊗ I)U †,
where a is a string on m bits and I denotes the identity operator on n − m bits. Then U
still permits oracle identification, but our requirements that U be dispersing are now re-
laxed. Here, we give a definition that is loose enough for our purposes, although further
weakening would still be possible.

Definition 8. Let U be a quantum circuit on n qubits. For 0 < α, β ≤ 1 and 0 < m ≤
n, we say that U is (α, β)-pseudo-dispersing if there exists a set A ⊆ {0, 1}m with
|A| ≥ 2αn such that for all a ∈ A there exists a unit vector |ψ〉 ∈ C2n−m

such that
∑

x∈{0,1}n

|〈a|〈ψ|U |x〉| ≥ β2
n
2 . (4)

This is a weaker property than being dispersing, meaning that any (α, β)-dispersing
circuit is also (α, β)-pseudo-dispersing.

We can now state our basic constant vs. linear query separation.

Theorem 9. If U is (α, β)-pseudo-dispersing, then there exists an oracle problem
which can be solved with one query, one use of U and success probability (2β/π)2.
However, any classical randomized algorithm that succeeds with probability ≥ δ must
use ≥ αn + log δ queries.

3 Another possible way to generalize [BV97] is to consider other unitaries of the form U =
A⊗n, for A ∈ U2. However, it is not hard to show that the only way for such a U to be
(Ω(1), Ω(1))-dispersing is for A to be of the form eiφ1σzHeiφ2σz .
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Before we prove this Theorem, we state a Lemma about how well states of the form
2−n/2

∑
x eiφx |x〉 can be approximated by states of the form 2−n/2

∑
x ±|x〉.

Lemma 10. For any vector (x1, . . . , xd) ∈ Cd there exists (θ1, . . . , θd) ∈ {±1}d such
that ∣∣∣∣∣

d∑

k=1

xkθk

∣∣∣∣∣ ≥ 2

π

d∑

k=1

|xk| .

The proof is in the full version of the paper[HH08].

Proof of Theorem 9: Since U is (α, β)-pseudo-dispersing, there exists a set A ⊂
{0, 1}m with |A| ≥ 2αn and satisfying (4) for each a ∈ A. The problem will be to
determine a by querying an oracle Oa(x). No matter how we define the oracle, as long
as it returns only one bit per call any classical randomized algorithm making q queries
can have success probability no greater than 2q−αn (or else guessing could succeed
with probability > 2−αn without making any queries). This implies the classical lower
bound.

Given a ∈ A, to define the oracle Oa, first use the definition to choose a state |ψ〉
satisfying (4). Then by Lemma 10 (below), choose a vector θ that (when normalized
to |θ〉) will approximate the state U †|a〉|ψ〉. Define Oa(x) so that (−1)Oa(x) = θx =
2n/2〈x|θ〉. By construction,

2−n/2|〈a|〈ψ|U |θ〉| ≥ 2

π
β (5)

which implies that creating |θ〉, applying U , and measuring the first register has proba-
bility ≥ (2β/π)2 of yielding the correct answer a. ��

5 Any Quantum Fourier Transform Is Pseudo-dispersing

In this section we start with some special cases of dispersing circuits by showing that
any Fourier transform is dispersing. In the next section we show that most circuits are
dispersing.

The original RFS paper [BV97] used the fact that H⊗n is (1,1)-dispersing to obtain
their starting O(1) vs Ω(n) separation. The QFT on the cyclic group (or any abelian
group, in fact) is also (1,1)-dispersing. In fact, if we will accept a pseudo-dispersing
circuit, then any QFT will work:

Theorem 11. Let G be a group with irreps Ĝ and dλ denoting the dimension of ir-
rep λ. Then the Fourier transform over G is (α, 1/

√
2)-pseudo-dispersing, where α =

(log
∑

λ dλ)/ log |G| ≥ 1/2.

Via Theorem 9 and Theorem 2, this implies that any QFT can be used to obtain a
superpolynomial quantum speedup. For most nonabelian QFTs, this is the first example
of a problem which they can solve more quickly than a classical computer.

Proof (Proof of Theorem 11). Let A = {(λ, i) : λ ∈ Ĝ, i ∈ {1, . . . , dλ}}.
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Let Vλ denote the representation space corresponding to an irrep λ ∈ Ĝ. The Fourier
transform on G maps vectors in C[G] to superpositions of vectors of the form
|λ〉|v1〉|v2〉 for |v1〉, |v2〉 ∈ Vλ.

Fix a particular choice of λ and |i〉 ∈ Vλ. If U denotes the QFT on G then let

ρ = U †
(

|λ〉〈λ| ⊗ |i〉〈i| ⊗ IVλ

dλ

)
U.

Define V := supp ρ, and let E|ψ〉∈V denote an expectation over |ψ〉 chosen uniformly
at random from unit vectors in V 4 Finally, let Π be the projector onto V . Note that
ρ = Π/dλ = E |ψ〉〈ψ|.

Because of the invariance of ρ under right-multiplication by group elements (i.e.
〈g1|ρ|g2〉 = 〈g1h|ρ|g2h〉 for all g1, g2, h ∈ G), we have for any g that

〈g|ρ|g〉 =
1

|G|
∑

h

〈gh|ρ|gh〉 =
1

|G| tr(ρ) =
1

|G| . (6)

Since E |ψ〉〈ψ| = ρ, (6) implies that

E
|ψ〉∈V

|〈g|ψ〉|2 = 〈g|ρ|g〉 =
1

|G| .

Next, we would like to analyze E |〈g|ψ〉|4.

E
|ψ〉

|〈g|ψ〉|4 = E
|ψ〉

tr (|g〉〈g| ⊗ |g〉〈g|) · (|ψ〉〈ψ| ⊗ |ψ〉〈ψ|) (7)

= tr (|g〉〈g| ⊗ |g〉〈g|) I + SWAP

dλ(dλ + 1)
(Π ⊗ Π) (8)

≤ tr (|g〉〈g| ⊗ |g〉〈g|) · (I + SWAP)(ρ ⊗ ρ) (9)

= 2(〈g|ρ|g〉)2 =
2

|G|2 (10)

To prove the equality on the second line, we use a standard representation-theoretic
trick (cf. section V.B of [PSW06]). First note that |ψ〉⊗2 belongs to the symmetric sub-
space of V ⊗ V , which is a dλ(dλ+1)

2 -dimensional irrep of Udλ
. Since E|ψ〉 |ψ〉〈ψ|⊗2 is

invariant under conjugation by u ⊗ u for any u ∈ Udλ
, it follows that E|ψ〉 |ψ〉〈ψ|⊗2 is

proportional to a projector onto the symmetric subspace of V ⊗2. Finally, SWAPΠ⊗2 has
eigenvalue 1 on the symmetric subspace of V ⊗2 and eigenvalue −1 on its orthogonal
complement, the antisymmetric subspace of V ⊗2. Thus, I+SWAP

2 Π⊗2 projects onto the
symmetric subspace and we conclude that

E
|ψ〉

|ψ〉〈ψ|⊗2
=

(I + SWAP)(Π ⊗ Π)

dλ(dλ + 1)
.

4 We can think of |ψ〉 either as the result of applying a Haar uniform unitary to a fixed unit
vector, or by choosing |ψ′〉 from any rotationally invariant ensemble (e.g. choosing the real
and imaginary part of each component to be an i.i.d. Gaussian with mean zero) and setting
|ψ〉 = |ψ′〉/

√
〈ψ′|ψ′〉.
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Now we note the inequality

E |Y | ≥ (EY 2)
3
2 /(EY 4)

1
2 , (11)

which holds for any random variable Y and can be proved using Hölder’s inequal-
ity [Ber97]. Setting Y = |〈g|ψ〉|, we can bound E|ψ〉 |〈g|ψ〉| ≥ 1/

√
2|G|. Summing

over G, we find

E
|ψ〉

∑

g∈G

|〈g|ψ〉| ≥ 1√
2

√
|G|.

Finally, because this last inequality holds in expectation, it must also hold for at least
some choice of |ψ〉. Thus there exists |ψ〉 ∈ V such that

∑

g∈G

|〈g|ψ〉| ≥ 1√
2

√
|G|.

Then U satisfies the pseudo-dispersing condition in (4) for the state |ψ〉 with β = 1/
√

2.
This construction works for each λ ∈ Ĝ and for |v1〉 running over any choice of

basis of Vλ. Together, this comprises
∑

λ∈Ĝ dλ vectors in the set A.

6 Most Circuits Are Dispersing

Our final, and most general, method of constructing dispersing circuits is simply to
choose a polynomial-size random circuit. We define a length-t random circuit to consist
of performing the following steps t times.

1. Choose two distinct qubits i, j at random from [n].
2. Choose a Haar-distributed random U ∈ U4.
3. Apply U to qubits i and j.

A similar model of random circuits was considered in [DOP07]. Our main result about
these random circuits is the following Theorem.

Theorem 12. For any α, β > 0, there exists a constant C such that if U is a random
circuit on n qubits of length t = Cn3 then U is (α, β)-dispersing with probability

≥ 1 − 2β2

1 − 2−n(1−α)
.

Theorem 12 is proved in the extended version of this paper[HH08]. The idea of the
proof is to reduce the evolution of the fourth moments of the random circuit (i.e. quan-
tities of the form EU tr UM1U

†M2UM3U
†M4) to a classical Markov chain, using the

approach of [DOP07]. Then we show that this Markov chain has a gap of Ω(1/n2), so
that circuits of length O(n3) have fourth moments nearly identical to those of Haar-
uniform unitaries from U2n . Finally, we use (11), just as we did for quantum Fourier
transforms, to show that a large fraction of inputs are likely to be mapped to states with
large L1-norm. This will prove Theorem 12 and show that superpolynomial quantum
speedups can be built by plugging almost any circuit into the recursive framework we
describe in Section 3.
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The Schur basis on n d-dimensional quantum systems is a generalization of the total angular
momentum basis that is useful for exploiting symmetry under permutations or collective unitary rotations.
We present efficient {size poly�n; d; log�1=��� for accuracy �g quantum circuits for the Schur transform,
which is the change of basis between the computational and the Schur bases. Our circuits provide explicit
efficient methods for solving such diverse problems as estimating the spectrum of a density operator,
quantum hypothesis testing, and communicating without a shared reference frame. We thus render
tractable a large series of methods for extracting resources from quantum systems and for numerous
quantum information protocols.
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A key component of quantum algorithms is their ability
to reveal information stored in nonlocal degrees of free-
dom. In particular, one of the most important building
blocks known is the quantum Fourier transform (QFT)
[1], an efficient circuit construction for conversion between
discrete position and momentum bases. The QFT converts
a vector of 2n amplitudes in O�n2� steps, in contrast to the
O�n2n� steps required classically.

Another elementary basis change important in quantum
physics is between independent local states and those of
definite total generalized angular momentum. When two
identical spin-1=2 particles interact with a global excita-
tion, due to their permutation symmetry they appear as a
singlet or a triplet to the external interaction. When this
basis is generalized to n d-dimensional systems (n ‘‘qu-
dits’’), we call it the Schur basis and call the unitary
transformation between local and Schur bases the Schur
transform.

The Schur transform is central to a plethora of quantum
information protocols and to many optimal physical meth-
ods for extracting information or resources from a quantum
system. These include methods to estimate the spectrum of
a density operator [2], perform quantum hypothesis testing
[3], perform universal quantum source coding [4], concen-
trate entanglement noiselessly [5], create states immune to
collective decoherence [6], and communicate without a
shared reference frame [7]. For all of these tasks (and
others), inefficient protocols also exist that work in local
bases; however, only the protocols using the Schur basis
are optimal. This suggests that the Schur basis is a natural

way to treat quantum states based on independent and
identically distributed random variables, i.e., to experi-
ments in which many copies of a single quantum state
are given. However, unlike the QFT, no efficient algorithm
for the Schur transform has been found, rendering proto-
cols which use it nonconstructive. If we wish to implement
the Schur transform in the lab to solve any of the problems
listed above, an explicit efficient circuit construction for
the Schur transform is needed.

Here, we resolve this problem by giving an efficient
construction of the Schur transform on n qudits, for arbi-
trary n and d. This is achieved using a quantum circuit of
size poly�n; d; log�1=��� for accuracy �. We believe that
this basis change is important not only for quantum infor-
mation and useful for extracting information about physi-
cal systems, but also as a new building block for future
quantum algorithms.

The Schur transform.—Consider a system of n qudits,
each with a standard local (‘‘computational’’) basis jii, i �
1 . . . d. The Schur transform relates transforms on the
system performed by local d-dimensional unitary opera-
tions to those performed by permutation of the qudits.
Recall that the symmetric group Sn is the group of all
permutations of n objects. This group is naturally repre-
sented in our system by

 P ���ji1i2 � � � ini � ji��1�1�i��1�2� � � � i��1�n�i; (1)

where � 2 Sn is a permutation and ji1i2 . . .i is shorthand
for ji1i � ji2i � . . . . Let Ud denote the group of d	 d
unitary operators. This group is naturally represented in
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our system by

 Q �U�ji1i2 � � � ini � Uji1i �Uji2i � � � � �Ujini; (2)

where U 2Ud.
The Schur transform is based on Schur duality, a well-

known [8] and powerful way to relate the representation
theory of P��� and Q�U�. For example, consider the case
of two qubits (n � 2, d � 2). The two-qubit Hilbert space
�C2��2 decomposes under Q into a one-dimensional spin-0
singlet space spanned by 1��

2
p �j01i � j10i� and a three-

dimensional spin-1 triplet space spanned by j00i, j11i,
and 1��

2
p �j01i 
 j10i�. Both of these spaces are acted upon

in an irreducible manner under the action of Q�U�, U 2
U2, meaning that the action of Q�U� does not mix these
two subspaces and these are the minimal such nonmixing
subspaces which exist. Schur duality is related to the fact
that these subspaces also happen to be irreducible repre-
sentations (irreps) of S2. The singlet state changes sign
under permutation of the two spins, and the triplet states
are invariant under permutation. These correspond to the
sign P sign and the trivial P trivial irreps of S2, and thus we
can write �C2��2 � �Q1 � P trivial� � �Q0 � P sign�, where
Qj is the spin-j irrep of U2.

This relation between the two representations exists for
an arbitrary number of qudits, and in general both the Ud
and Sn irreps will be nontrivial. For example, the Hilbert
space of three qubits (n � 3, d � 2) decomposes into
�Q3=2 � P trivial� � �Q1=2 � P 2;1�, where P 2;1 denotes a
particular two-dimensional mixed symmetry irrep of S3.
In terms of the original (local) basis the Q1=2 � P 2;1 space
contains two spin-1=2 objects, one spanned by j110i 

!j011i 
!
j101i (suppressing normalization) and
j001i 
!j100i 
!
j010i, and the other obtained by re-
placing ! � e2�i=3 with !
. These two spaces correspond
to the two dimensions of P 2;1.

The general theorem of Schur duality states that for any
(integer) d and n,

 �Cd��n �
M

�2Part�n;d�

Q� � P �; (3)

where � is chosen from the set of possible partitions of n
into� d parts, and simultaneously labels the Ud-irrep Q�
and the Sn-irrep P �. This goes beyond simultaneously
diagonalizing the commuting representations P and Q
because P � depends only on n (through �) and not d.
Schur duality means that there exists a basis for �Cd��n

with states j�; q�; p�iSch, where � labels the subspaces
Q� � P � and jq�i 2Q� and jp�i 2 P � label bases for
Q� and P �, respectively.

Just as in the examples above, the Schur basis states
j�; q�; p�iSch are superpositions of the n qudit computa-
tional basis states ji1i2 . . . ini,

 j�; q�; p�iSch �
X
i1;...;in

�USch�
�;q�;p�
i1;i2;...;in

ji1i2 � � � ini: (4)

By the isomorphism of Eq. (3), this defines a unitary
transformation USch (with matrix elements as given), the
Schur transform we desire. If we think of USch as a quan-
tum circuit, it maps the state j�; q�; p�iSch into the compu-
tational basis state j�; q�; p�i, with �, q�, and p� expressed
as bit strings. Since dim�Q�� and dim�P �� vary with � we
need to pad the jqi and jpi registers; this requires only
constant spatial overhead. We know of no efficient classi-
cal algorithms to calculate even a single matrix element of
USch, the best known results being recursive definitions of
these matrix elements which require exponential time to
evaluate [9]. The main purpose of this Letter is to show
how the entire transformation can be performed on a
quantum computer in poly�n; d� steps {implying as a cor-
ollary a classical algorithm for Schur transforming a vector
of length dn in time O�dnpoly�n; d��g.

The defining property of USch is that it reduces the action
of Q and P into irreps. For any � 2 Sn and any U 2Ud,
P��� and Q�U� commute, so we can express both reduc-
tions at once as

 U SchQ�U�P���UySch �
X

�2Part�d;n�

j�ih�j � q��U� � p����;

(5)

where q� and p� are irreps of Ud and Sn, respectively.
Example of the Schur transform.—Consider the case of

two qubits (n � 2, d � 2). Here the Schur transform is the
transform between the standard computational basis ji1; i2i
and a basis describing the singlet and triplet states.
Explicitly the matrix of elements for the Schur transform,
as in Eq. (4), are given by

 

j� � �1; 1�; q� � 0; p� � 0iSch

j� � �2; 0�; q� � 
1; p� � 0iSch

j� � �2; 0�; q� � 0; p� � 0iSch

j� � �2; 0�; q� � �1; p� � 0iSch

8>>><>>>:
0 1��

2
p � 1��

2
p 0

1 0 0 0
0 1��

2
p 1��

2
p 0

0 0 0 1

26664
37775

z�����������������}|�����������������{j00i j01i j10i j11i

:

(6)

Here � � �1; 1� labels the singlet and � � �2; 0� labels the
triplet. In this simple case, the permutation irreps are both
one dimensional. Further as noted above, when we imple-
ment this we must express the label �, p�, q� in terms of bit
strings from some computational basis. For example, we
could label � by a single qubit and q� by two qubits (no
qubits are required for p� in this example).

Applications of the Schur transform.—The numerous
applications of the Schur transform mentioned in the in-
troduction [2–7] solve a variety of problems which are
relevant to quantum information theory as well as to ex-
periments designed to acquire information or resources
from a quantum system. Applying the Schur transform
extracts �, q, and p values for a given state, allowing the
values be manipulated like any other quantum data. Here
we briefly review a few of these applications, focusing on
the ones most relevant to physics.
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One application of the Schur transform is spectrum
estimation [2]. In spectrum estimation, we are given access
to n copies of a density operator � �

P
ipijiihij. Suppose

the experimentalist wishes to estimate the values of the
eigenvalues pi but does not know the basis jii. Using the
Schur transform is the optimal method for estimating this
spectrum for any value of n. In particular, if we are given
��n, then performing the Schur transform on this state
followed by measuring the irrep label � provides an esti-
mate of the spectrum by taking the partition � �
��1; �2; . . . ; �d� and dividing each �i by n: pi �
��1

n ;
�2

n ; . . . ; �dn �. In the limit of large n this estimate is
optimal [2].

Consider, for example, spectrum estimation for the n �
2, d � 2 example given above. Let � � pj0ih0j 
 �1�
p�j1ih1j be a fixed state and assume the experimentalist
does not know the basis j0i, j1i. In order to estimate this
spectrum if we are given two copies of �, we perform the
Schur transform, Eq. (6), on these two qubits and measure
the � register. If we get � � �2; 0� we estimate that the
spectrum is that of a pure state p1 � 1, p2 � 0 and if we
get � � �1; 1� we estimate that the spectrum is that of the
fully mixed state p1 �

1
2 , p2 �

1
2 . For a given value of p,

the � � �2; 0� case occurs with probability 1� p�1� p�,
and the � � �1; 1� case occurs with probability p�1� p�.
Note that only if p � 0 or 1 does this estimate exactly
reproduce the spectrum. Hence we learn a little about the
spectrum with two copies of �; note that what we have
learned is independent of the basis j0i, j1i. In the limit of a
large number of copies, n� 1, the Schur transform pro-
vides the optimal estimate of the spectrum.

Another application of the Schur transform is to encode
quantum information into noiseless subsystems which
arise due to collective decoherence [6]. Here we run the
Schur transform backwards (this can be done for the circuit
by applying the inverse of every gate and reversing the
order of the gates). If we input into the inverse Schur
transform a fixed label j�i, some arbitrary information in
the jq�i register, and the information we wish to encode in
a noiseless manner into the jp�i basis, then the n qudit
states output from this transform are encoded in a noiseless
manner. In particular, the effect of decoherence which
couples identically to each of the n qudit states acts trivi-
ally on the encoded information. Noiseless subsystems
have already been implemented in ion trap quantum com-
puters [10] and our transform makes feasible their use for
larger systems.

As an example of the Schur transform in quantum
information theory, consider the situation where Alice
and Bob share n copies of a partially entangled state
j iAB �

P
i
�����
pi
p
jiiAjiiB and they wish to extract the maxi-

mal number of maximally entangled states, 1����
dE
p 	PdE

k�1 jiiAjiiB, from these n copies. Alice and Bob’s local
density matrices are invariant under permutations of their n
copies, so if they perform the Schur transform and measure
the j�i basis, this leaves their jp�i registers in a maximally

entangled state. If j i is unknown and no classical com-
munication is allowed, then this is an optimal distortion-
free entanglement protocol [5]. Note that in order to make
this protocol computationally tractable, we need to de-
scribe how the jp�i basis states are labeled in a way that
can be efficiently and reversibly mapped to the integers
f1; . . . ; dim�P ��g [11].

Quantum circuit for the Schur transform.—We construct
a quantum circuit [12] for USch in two stages, first for d �
2, then generalizing to d > 2. Each of these constructions
follows an iterative structure, in which the Schur transform
on n qudits is realized using n elementary steps, each of
which adds a single qudit to an existing Schur state of the
form j�; q; pi.

For d � 2, this elementary step corresponds to the addi-
tion of angular momentum, and the matrix elements of the
unitary transform are known as Clebsch-Gordan (CG) co-
efficients [13]. In this case, � and q can be conveniently
denoted by half integers j and m (with jmj � j � n=2)
which give the total angular momentum and the
z-component of angular momentum, respectively. And in
terms of j, the CG transform takes as input jj;mi and a
single spin js � �1=2i, and outputs a linear combination
of the states jj0 � j� 1=2; m0 � m
 si. The amplitudes
of the linear combination are readily computed using the
usual ladder operators for raising and lowering angular
momenta [13]. In addition, however, we must distinguish
between multiple distinct pathways which add up to give
the same total j, as demonstrated by the three qubit ex-
ample above. In fact, it is the permutation symmetry of
these pathways which gives rise to P j, and thus we track
the pathway with another output label p � j0 � j.

Putting this together, we can define an elementary
Clebsch-Gordan transform step UCG as a rotation between
two specific basis states,

 

jj0�; m
0; p � �1

2i

jj0
; m
0; p � 
1

2i

" #
�

cos�j;m0 � sin�j;m0
sin�j;m0 cos�j;m0

" #

	
jj; m
ijs � �

1
2i

jj; m�ijs � 

1
2i

" #
; (7)

where j0� � j� 1=2, m� � m0 � 1=2, and cos�j;m0 ������������������
j
m0
1=2

2j
1

q
. UCG can be realized with three gates in a

quantum circuit, as shown in Fig. 1, using as one gate a
controlled rotation about ŷ by angle �j;m0 . This angle is
computed using usual quantum and reversible circuit tech-
niques [12] with error �, using poly�log�1=��� standard
circuit elements.

The full Schur transform is implemented by cascading
UCG as shown in Fig. 2. The complexity of this circuit is
thus O�npoly log�1=���. We now claim that
jp1; . . . ; pni :� jpi labels a basis for P j. This follows
from Eq. (3) and the fact that the pk � jk � jk�1, k �
1; . . . ; n are invariant under Q, while j and m are invariant
under P. In fact, since jk describes the action of Sk on the
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first k qubits, jp1; . . . ; pni is a subgroup-adapted basis for
the chain S1 � S2 � . . . � Sn, also known as Young’s
orthogonal basis [14]. This basis is also used in the only
known fast quantum Fourier transform over Sn [14,15].

Construction of the Schur transform for d > 2 follows
the same ideas as for d � 2, but is complicated by the
challenge of showing that the elementary UCG steps for
d > 2 can be computed in poly�d� steps [a direct construc-
tion along the lines of Eq. (7) would require nO�d� steps].
USch is constructed as a cascade of O�n� UCG transforms,
just as for d � 2. Each UCG combines a state j�; q�i [with
� 2 Part�d; k� 1� and jq�i 2Q�] with a single qudit
state jiki, to obtain a superposition of states j�0; q0�0 i
[with �0 2 Part�d; k� and jq0�0 i 2Q�0]. Simultaneously,
the permutation labels jpi are constructed; equivalently,
we could save the values of � that we generate in each step,
just as p1; . . . ; pn are equivalent to j1; . . . ; jn for d � 2.
UCG can be computed efficiently because of a recursive
relationship between UCG for Ud 	Ud and that of
Ud�1 	Ud�1 in terms of reduced Wigner coefficients
[16]. Crucially, there is an efficient classical algorithm
for the computation of the reduced Wigner coefficients
[9] needed for UCG. Specific details of this calculation
are given in detail elsewhere [11]. The complexity of the
full Schur transform is thus found to be polynomial in n, d,
and log���1�.

Conclusion.—We have shown how to efficiently per-
form the Schur transform. Without efficient implementa-
tions of the Schur transform, the various physical and
quantum information tasks we have discussed [2–7] are
not practical in the lab. As a final note, we comment on the
Schur transform as it relates to the search for new quantum
algorithms. An important open problem here is to find a
black-box problem for which the Schur transform offers a
speedup over classical algorithms. In this respect, there are
few unitary transforms which have both an efficient quan-
tum circuit and interpretations which might allow these
transforms to be useful in an algorithm. We are hopeful that
our circuits will be useful for quantum algorithms exactly

because they have such clear group representation theory
interpretations.
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FIG. 2. Quantum circuit for the Schur transformation USch,
transforming between ji1i2 � � � ini and jj;m; pi. The fact that
the jp1; p2; . . . ; pni is a full basis is intimately related to Schur
duality.

|J / • X |J

|m / X • |m

|s • Ry (θJ, m ) • |p

FIG. 1. Quantum circuit implementing UCG to convert be-
tween the jj;mijsi and jj0; m0; pi bases, for the d � 2 (qubit)
case. Following standard conventions [12], time goes from left to
right, the jji and jmi wires hold multiple qubits, and jsi is one
qubit. The controlled X operation CX adds the control to the
target qubits, i.e., CXjsijmi � jsijm
 si. The doubly controlled
Ry��j;m0 � gate implements the rotation given by Eq. (7) using the
j and m0 qubits.
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We give a simple recipe for translating walks on Cayley graphs of a group G into a
quantum operation on any irrep of G. Most properties of the classical walk carry over
to the quantum operation: degree becomes the number of Kraus operators, the spectral
gap lower-bounds the gap of the quantum operation (viewed as a linear map on density
matrices), and the quantum operation is efficient whenever the classical walk and the
quantum Fourier transform on G are efficient. This means that using classical constant-
degree constant-gap families of Cayley expander graphs on groups such as the symmetric
group, we can construct efficient families of quantum expanders.

Communicated by: R Cleve & B Terhal

1 Background

Classical expanders can be defined in either combinatorial or spectral terms, while quantum

expanders usually have only a spectral definition. Quantum expanders were introduced in [1]

for their application to quantum spin chains and in [2] for applications to quantum statistical

zero knowledge. Here we (following [1] and [3]) define a (N, D, λ) quantum expander to be a

quantum operation E that

• Has N -dimensional input and output.

• Has ≤ D Kraus operators.

• Has second-largest singular value ≤ λ. Equivalently, if E(ρ) = ρ and tr ρσ = 0 then

‖E(σ)‖2 ≤ λ‖σ‖2, where ‖X‖2 :=
√

tr X†X.

We say that N is the dimension of the expander, D its degree (by analogy with classical

expanders) and 1 − λ its gap. Note that all quantum operations have at least one fixed state

and thus at least one eigenvalue equal to one. The above definition is stricter than the one

in [2], which demanded only that an expander increase the von Neumann entropy of a state

by at most a constant amount. Finally, we say that an expander is efficient (or “explicit”) if

it can be implemented on a quantum computer in time poly(log N). This paper will describe

a new method for constructing quantum expanders, which will in some cases yield efficient

(N, O(1),Ω(1)) expanders for all values of N > 1.
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2 Previous work on efficient quantum expanders

In [4] it was shown that, just as random constant-degree graphs are likely to be expander

graphs, quantum operations that apply one of a constant number of random unitaries from

U(N) are likely to be quantum expanders, with spectral gap approaching the optimal value

as N → ∞. Naturally such expanders cannot be efficiently constructed: generic elements of

U(N) require Θ(N2) gates to construct[5], and if we want to produce the expander determin-

istically, the only proposed method[3, Sec. 3.3] does an exhaustive search over exp(Ω(N)) dif-

ferent unitaries. As there are log N qubits, this could potentially take time doubly-exponential

in the number of qubits.

Prescriptions for potentially efficient constructions are given in [1] and [2]. Both begin

with classical expanders and turn them into quantum expanders. The proposal in [1] is to

start with a so-called “tensor power expander” and then to add phases. A tensor product

expander is a degree D graph (V, E) where: (a) each outgoing edge is labelled 1, . . . , D, and

(b) if G′ is the graph with vertices V ×V and edges given by all pairs (e1, e2) ∈ E×E such that

e1 and e2 have the same label, then G′ is an expander. Unfortunately, when Cayley graphs

(see Section 4 for definition) are labeled in the natural way (with label g corresponding to

multiplication by group element g) they are not tensor power expanders. It seems plausible

that random constant-degree graphs would be tensor power expanders, but this has not been

proven.

The approach of [2] is, like this paper, to turn classical Cayley graph expanders into

quantum expanders. Its main idea is to apply a classical expander twice: first in the standard

basis, and then conjugated by a sort of generalized Hadamard transform (which they call a

“good basis change”), so that it acts in a conjugate basis. Unfortunately, the quantum Fourier

transform is not, by itself, always enough to make a good basis change. For some groups,

such as SL(2, q), it is, and thus [2] obtain a quantum expander based on the classical LPS

expander graph. However, it is unknown how to perform the QFT on SL(2, q) efficiently (see

[6] for partial progress), and so we do not know how to efficiently perform the basis change

required for their construction. On the other hand, while there are groups such as Sn for

which both efficient QFT’s and explicit constant-degree expanders are known, none have yet

been proved to satisfy the additional property needed for the QFT to be a good basis change.

Very recently, two different constructions of efficient, constant-degree quantum expanders

have appeared. The first is described in[3]. Their approach is to generalize the classical

zig-zag product[7] to quantum expanders, using a constant number of random unitaries[4] for

the base case. Like our paper, [3] also describes a family of constant-degree, constant-gap,

efficient expanders. A minor advantage of our construction is that it can be made to work

for any dimension N > 1, while [3] requires that N be of the form D8t for a positive integer

t and that D > D0 for a universal constant D0.

Another efficient constant-degree expander is given in [8]. Their approach is to turn the

classical Margulis expander[9] into an operation on quantum phase space. This results in

quantum expanders with the same parameters as the Margulis expander (degree 8, second

largest eigenvalue λ ≤ 2
√

5/8) in any dimension, including even infinite dimensional systems.

While their paper only describes an efficient construction for dimensions of the form N = dn

for small d, their approach is easily generalized to run in time poly logN for any N .

Finally, if we relax the assumption that expanders have constant degree, then efficient
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constructions have been described in [10, 11].

3 Representation theory notation

Let G be a group (either finite or a compact Lie group), and Ĝ a complete set of inequivalent

unitary irreducible representations (irreps). For an irrep λ ∈ Ĝ and a group element g ∈ G,

we denote the representation matrix by rλ(g), its dimension by dλ and the space it acts upon

by Vλ. Let UQFT be the Fourier transform on G, corresponding to the isomorphism

C[G] ∼=
⊕

λ

Vλ ⊗ V ∗
λ .

It is given by the explicit formula UQFT =
∑

g,λ,i,j

√
dλ/|G|rλ(g)i,j |λ, i, j〉〈g|. Let Lx :=∑

g∈G |xg〉〈g| denote the left multiplication operator. Then in the Fourier basis, this translates

into action on the first tensor factor.

UQFTLxU †
QFT =

∑

λ∈Ĝ

|λ〉〈λ| ⊗ rλ(x) ⊗ Idλ
. (1)

4 Expander construction

Let G be a group with a generating set Γ ⊂ G. Define the Cayley graph (G; Γ) to have vertex

set G and edges (g, xg) for each g ∈ G and each x ∈ Γ. We will be interested in the case when

(G; Γ) is an expander graph.

Choose any non-trivial λ ∈ Ĝ. Our quantum expander is defined as follows. Let E be the

quantum operation on Vλ given by

E(ρ) =
1

|Γ|
∑

g∈Γ

rλ(g)ρ rλ(g)†. (2)

This operation acts on a dλ dimensional space by choosing a uniformly random g ∈ Γ and

then applying the (unitary) representation matrix rλ(g). We will see below ways in which

rλ(g) can be implemented on a quantum computer.

I claim that

1. The degree of E is ≤ |Γ|.

2. If (a) group multiplication in G is efficient, (b) there is a procedure for efficiently sam-

pling from Γ, (c) the QFT on G is efficient and (d) log |G| ≤ poly(log dλ), then E can

be implemented efficiently.

3.

λ2(E) ≤ λ2(WΓ). (3)

Here λ2(E) is the second largest singular value of E , when interpreted as a linear map on

density matrices, while λ2(WΓ) is the second-largest singular value of the Cayley graph

transition matrix:

WΓ =
1

|Γ|
∑

γ∈Γ

∑

g∈G

|γg〉〈g|.
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Thus, classical Cayley graph expanders give quantum expanders.

Proof of claims (1-3). The first claim is immediate. In the second claim, we use the fact

that rλ(g) can be applied to |ψ〉 ∈ Vλ by performing the inverse QFT on |λ〉|ψ〉|0〉, applying

the map |x〉 → |gx〉, performing the QFT and keeping only the second register (see [12, Chap.

8] for details). Condition (d) is because we say the QFT on G is efficient if it runs in time

poly(log |G|), but we would like our expander to run in time poly(logdλ). Alternatively (a),

(c) and (d) can be replaced by any other efficient procedure for performing rλ(g) on a quantum

computer. (See Section 5 for examples.)

The only non-trivial claim above is (3). Assuming that Γ generates G, the unique station-

ary state of WΓ is the uniform distribution

|u〉 :=
1√
|G|

∑

g∈G

|g〉.

We can find the second largest eigenvalue by subtracting off a projector onto the stationary

state and taking the operator norm. Thus

λ2(WΓ) = ‖WΓ − |u〉〈u| ‖∞, (4)

where ‖M‖∞ is the largest singular value of M .

Similarly, the maximally mixed state τ := Idλ
/
√

dλ is a stationary state of E . We choose

the normalization so that τ will be a unit vector with respect to the Hilbert-Schmidt inner

product 〈A, B〉 := trA†B. However, to analyze E as a linear operator, it is simpler to think

of it as acting on vectors. The corresponding linear map is denoted Ê and is defined to be

Ê :=
1

|Γ|
∑

γ∈Γ

rλ(γ) ⊗ rλ(γ)∗, (5)

where the ∗ denotes the entry-wise complex conjugate with respect to a basis Bλ for Vλ. Then

|τ̂ 〉 := d
−1/2
λ

∑
b∈Bλ

|b〉 ⊗ |b〉 is a fixed point of Ê . Thus

λ2(E) = ‖Ê − |τ̂〉〈τ̂ | ‖∞. (6)

We now use representation theory to analyze (4) and (6). First, examine (4). Since UQFT is

unitary, ‖WΓ−|u〉〈u| ‖∞ = ‖UQFTWΓU †
QFT−UQFT |u〉〈u| U †

QFT‖∞. Since UQFT|u〉 = | trivial〉,
we can use (1) to obtain

λ2(WΓ) = ‖WΓ − |u〉〈u| ‖∞ =

∥∥∥∥∥∥
1

|Γ|
∑

γ∈Γ

∑

λ∈Ĝ

|λ〉〈λ| ⊗ rλ(γ) ⊗ Idλ
− |trivial〉〈trivial|

∥∥∥∥∥∥
∞

(7)

=

∥∥∥∥∥∥∥∥

1

|Γ|
∑

γ∈Γ

∑

λ∈Ĝ
λ&=trivial

|λ〉〈λ| ⊗ rλ(γ) ⊗ Idλ

∥∥∥∥∥∥∥∥
∞

(8)

= max
λ&=trivial

∥∥∥∥∥∥
1

|Γ|
∑

γ∈Γ

rλ(γ)

∥∥∥∥∥∥
∞

(9)
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A similar argument applies to (6) as well. Here the first step is to decompose Vλ ⊗V ∗
λ into

irreps of G. In general,

Vλ ⊗ V ∗
λ

∼=
⊕

ν∈Ĝ

Vν ⊗ Cmν ,

where mν is the multiplicity (possibly zero) of Vν in Vλ ⊗ V ∗
λ . Let UCG be the unitary

transform implementing the above isomorphism. Then by definition,

UCG (rλ(g) ⊗ rλ(g)∗)U †
CG =

∑

ν∈Ĝ

|ν〉〈ν| ⊗ rν(g) ⊗ Imν . (10)

We can use this to analyze the spectrum of E . In particular

UCGÊU †
CG =

∑

ν∈Ĝ

|ν〉〈ν| ⊗


 1

|Γ|
∑

γ∈Γ

rν(γ)


 ⊗ Imν . (11)

From Schur’s Lemma, we know that mtrivial = 1, corresponding to the stationary state |τ̂〉.
Thus

λ2(E) = ‖E − |τ̂ 〉〈τ̂ | ‖∞ (12)

= ‖UCG(E − |τ̂ 〉〈τ̂ |)U †
CG‖∞ (13)

= max
mν &=0

ν &=trivial

∥∥∥∥∥∥
1

|Γ|
∑

γ∈Γ

rν(γ)

∥∥∥∥∥∥
∞

(14)

≤ max
ν &=trivial

∥∥∥∥∥∥
1

|Γ|
∑

γ∈Γ

rν(γ)

∥∥∥∥∥∥
∞

(15)

= λ2(WΓ). (16)

This completes the proof .

5 Examples of quantum expanders

If G = Sn then we can use the explicit expander of [13] and the efficient QFT of [14]. The

dimension N = dλ can be the size of any irrep of Sn, which asymptotically can be as large as√
n! exp(−O(

√
n)). Run-time is thus poly-logarithmic in the dimension, meaning polynomial

in the number of qubits. However if we would like an expander on exactly N dimensions, we

are not guaranteed that n ≤ poly log(N) exists such that dλ = N for some λ ∈ Ŝn, nor do we

know how to efficiently check, for a given n, whether such a λ exists. (For completeness, we

mention here that irreps of Sn are labeled by partitions (λ1, . . . , λn) with λ1+. . .+λn = n and

λ1 ≥ . . . ≥ λn ≥ 0. Their dimension is given by dλ = n!
∏

i<j(λi −λj − i+j)/
∏

i(λi +n− i)!.)

Some other Cayley graph constructions also carry over. For example, the (classical) zig-

zag product can be interpreted as a Cayley graph, where the group is an iterated wreath

product[15]. Additionally, the irreps of these wreath products are large (although also with

possibly inconvenient dimensions) and quantum Fourier transforms on them can be performed

efficiently[6]. Thus, classical zig-zag product expanders can also be used to construct efficient,
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constant-degree, constant-gap quantum expanders. (We remark in passing that this construc-

tion appears not to be related to the quantum zig-zag product of [3].)

If we permit approximate constructions then we can relax the assumption that G is finite.

For example, if G = SU(2) then several explicit expanders are known[16,17], but no efficient

circuits are yet known for the QFT. It would suffice even to be able to implement rλ(g) in

time poly-logarithimic in dλ. This latter result is claimed by [18], but the algorithm there is

missing crucial steps.

Finally, to construct expanders for any dimension N > 1 we can use the fact that the

SN+1-irrep λ = (N, 1) has dimension N . To implement rλ(π) for π ∈ SN+1 we cannot use

the QFT on SN+1, since our run-time needs to be poly log(N). However, we can instead

embed Vλ into the N + 1-dimensional defining representation of SN+1, which is given by

rdef(π)|x〉 = |π(x)〉 for x = 1, . . . , N + 1. This representation is reducible and decomposes

into one copy of trivial representation (spanned by |1〉 + . . . + |N + 1〉) and one copy of the

N -dimensional irrep V(N,1). To embed Vλ in the defining representation, we can use any

N + 1-dimensional unitary that maps |N + 1〉 to 1√
N+1

∑N+1
x=1 |x〉. Then performing rdef(πj)

(for Cayley graph generator πj) requires only that πj(x) be computable from j and x in

time poly(log N). A careful examination of the construction of [13] shows this to be the

case. Thus, this technique yields constant-degree, constant-gap explicit expanders for any

dimension N > 1. (Of course, for low enough values of N the degree will be larger than

N2 and so the resulting expander will be inferior to the trivial “expander” which applies a

random generalized Pauli matrix.)
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We introduce the concept of quantum tensor product expanders. These generalize the

concept of quantum expanders, which are quantum maps that are efficient randomizers
and use only a small number of Kraus operators. Quantum tensor product expanders
act on several copies of a given system, where the Kraus operators are tensor products of
the Kraus operator on a single system. We begin with the classical case, and show that

a classical two-copy expander can be used to produce a quantum expander. We then
discuss the quantum case and give applications to the Solovay-Kitaev problem. We give
probabilistic constructions in both classical and quantum cases, giving tight bounds on

the expectation value of the largest nontrivial eigenvalue in the quantum case.

Keywords: Quantum computing, Unitary transform, Wavelet
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1 Background: classical and quantum expanders

1.1 Definitions

The concept of t-designs[1] provides a way of randomizing quantum states. For example, a

1-design is a set of unitaries {Uk}, where k = 1, . . . ,K, such that the average over the set

takes any input state to a maximally mixed state. A 2-design is a set of unitaries such that

applying Uk ⊗ Uk to a state on a bipartite system generates the twirling operation[2]. Quan-

tum expanders, as studied in Hamiltonian complexity[3], computer science[4], and quantum

information theory[5], provide a way of approximately realizing a 1-design by repeatedly ap-

plying a completely positive map built out of a small number of unitaries. In this paper, we

introduce the concept of “tensor product expanders”, which generalize this result and give us

a way to approximately realize t-designs. We also discuss the classical case, and show that

classical tensor product expanders can be used to generate quantum expanders.

Quantum expanders are a quantum analogue of expander graphs[8]. In the quantum case,

we consider a completely positive, trace preserving map

E(M) =

D∑

s=1

A†(s)MA(s), (1)

336
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where the number of Kraus operators D is relatively small and the map E has a spectral

gap between the largest eigenvalue, equal to unity, and the next largest eigenvaluea. We write

the spectrum of E as λ1, λ2, ... with λ1 = 1 and λ2, ... all bounded in absolute value by some

λ < 1. We can equivalently consider the operator Ê :=
∑D

s=1A(s) ⊗A(s)∗.
In this paper we consider the case in which the operators A†(s) are proportional to unitary

operators:

A(s) =
1√
D
U(s). (2)

Then the expander map can be implemented by choosing s uniformly at random from {1, . . . ,D},

and then applying U(s) to the quantum state. The natural generalization of this process, in

which we consider k copies of a quantum system, choose a unitary at random, and apply the

unitary to all k copies, will be called a k-copy tensor product expander. We will show that

these give a way to approximate t-designs for t = k.

Random walks on expander graphs can be viewed similarly, as acting on a distribution

with a randomly chosen permutation matrix. Consider a directed graph, where each node has

D edges leaving it. Label the edges from 1 up to D such that each label appears exactly once

among the incoming edges of each vertex and exactly once among the outgoing edges of each

vertex. Then, for each edge label s, 1 ≤ s ≤ D, define a permutation πs, where πs(i) = j if

a directed edge with label s goes from node i to node j. Then, given a random walk on the

graph, the probability distribution p(i) changes in a single step by

p(i) → 1

D

D∑

s=1

N∑

j=1

P (s)ijp(j), (3)

where P (s) is the permutation matrix corresponding to the permutation πs; i.e. P (s)ij = 1

if πs(j) = i and 0 otherwise.

Hermitian expanders: It is sometimes convenient to guarantee that an expander we con-

struct is Hermitian. To obtain Hermitian E in the quantum case, we impose

U(s+D/2) = U(s)†. (4)

Similarly, in the classical case, we impose

πs = π−1
s+D/2 (5)

This turns the directed graph into an undirected graph. For notational convenience, we

identify s +D with s throughout this paper, so that s is a periodic variable with period D.

Note that this constraint (4) requires that D be even. There do exist other ways to construct

Hermitian expanders with odd D, if for some s we have U(s) = U(s)†.

1.2 Application to state randomization

For classical expanders, an important implication of the spectral gap is that random walks

on an expander graph rapidly approach the stationary distribution. Similarly, quantum ex-

panders can be shown to be rapid mixing. This has application to the problem of state

aIn the non-Hermitian case discussed below, we define the gap instead to be one minus the second-largest
singular value of the map E.
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randomization, in which classical randomness is used to map a quantum state to an output

that is close in trace distance to the maximally mixed state. Ideally the constructions would

be [computationally] efficient, meaning they run in time polynomial in the number of qubits,

and would use as few random bits as possible.

To make this concrete, suppose that E is Hermitian and unital with gap 1−λ, and consider

a quantum state ρ. We wish to bound the trace norm distance between the maximally mixed

state and the state Em(ρ) obtained by acting on ρ with some high power, m, of the map E .

The calculation exactly follows the classical case. We begin by bounding the ℓ2 distance. For

a matrix A, define ‖A‖2 =
√

trA†A and ‖A‖1 = tr |A| = tr
√
A†A. Then

∥∥∥∥Em(ρ) − I

N

∥∥∥∥
2

2

≤ |λ|2m, (6)

as may be shown by writing ρ as a linear combination of eigenvectors of E , and then by

Cauchy-Schwartz, ∥∥∥∥Em(ρ) − I

N

∥∥∥∥
1

≤
√
N |λ|m. (7)

Thus, to obtain a given bound on the trace norm distance ǫ, it suffices to take

m ≥ logλ(ǫ/
√
N). (8)

This implies that the set of unitaries, consisting of all unitaries of the form U(s1)U(s2) · · ·U(sm),

gives an ǫ-approximate 1-design using

K := Dm =

(
N

ǫ2

) 1
2 log1/λ(D)

(9)

unitaries.

The exponent 1
2 log(D)/ log(1/λ) can be thought of as a measure of the efficiency of an

expander, meaning the number of bits of randomness it requires to achieve a certain amount

of state randomization. Before showing how to evaluate 1
2 log(D)/ log(1/λ), we review other

methods of ℓ1 state randomization. The simplest is to apply one of N2 generalized Pauli

operators. This can be done efficiently (i.e. in time poly log(N)) and perfectly randomizes any

state (i.e. ǫ = 0). However, it uses far more randomness than necessary when ǫ > 0. Choosing

K = O(Nǫ−2 log(1/ǫ)) random unitaries was shown to suffice in [10], improving a result of

[11] (both of which in fact addressed the more difficult problem of ℓ∞ state randomization).

Similarly an efficient K = 4Nǫ−2 construction was given in [12], which uses less randomness

than the efficient constructions of [13] and even than the inefficient constructions based on

random unitaries. We note in passing that the constructions in [12, 13] are based on expanders

with λ = ǫ/
√
N and D = K.

An expander-based state randomization scheme will be efficient if the underlying ex-

pander is efficient and the number of unitaries it uses will be given by (9). Unfortunately
1
2 log(D)/ log(1/λ) is larger than 2 for all known efficient constant-degree expander constructions[5,

6, 7] (e.g. for the Margulis expander[6], it is ≈ 8.4, and for the zig-zag product[5] it is 2+o(1)).

However, if U(1), . . . , U(D/2) are chosen at random with U(s+D/2) = U(s)† then Ref. [19]

showed that with high probability 1
2 log(D)/ log(1/λ) ≈ 1+O(log(N)N−1/6)+2/ log(D), and

thus that K is within a small multiplicative factor of N/ǫ2.

We summarize the above discussion as follows:
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Theorem 1 For any N and any ǫ > 0, consider a set of unitaries U1, . . . , UK ∈ UN ,

which are taken to be strings of unitaries drawn from a set of D/2 unitaries U(1), ..., U(D/2)

and their conjugates for any D ≥ 4. Then for most choices of U(1), ..., U(D/2), choose the

string length such that

K =
(N
ǫ2

)1+O(N−1/6 log(N))+2/ log(D)

(10)

and ∥∥∥∥∥
1

K

K∑

s=1

UsρU
†
s − I

N

∥∥∥∥∥
1

≤ ǫ,

for all N -dimensional density matrices ρ.

If we take D ≈ 4N/ǫ2 then Theorem 1 can be thought of as tightening the analysis

of random unitaries from [10, 11, 12], so that only (4 + o(1))N/ǫ2 random unitaries are

necessary. This shows that Haar-uniform unitaries require almost exactly the same amount

of randomness as the construction of [12], although they have the substantial disadvantage of

requiring poly(N) time to implement instead of poly(log(N)) time. Since λ ≥ (2
√
D − 1/D−

O(1/N))·(1−O(log log(N)/ log(N))) for any quantum expander that includes its own inverses

[19], one can show that 4N/ǫ2 is the minimum possible values of K for any expander-based

randomizing map.

Apart from random unitaries and the large-D constructions of [13, 12], we know of one

other class of quantum expanders for which 1
2 log(D)/ log(1/λ) ≈ 1. These are obtained by

applying the prescription of [7] to the SU(2) expanders described by Lubotsky, Phillips and

Sarnak in [14]. Such expanders exist for any N whenever D is odd and 2D − 1 is prime, and

satisfy λ = 2
√
D − 1 exactly. Thus, they provide another K ≈ 4N/ǫ2 method of performing

state randomization. However, the only claimed efficient construction of these expanders[15]

has an incomplete proof.

In the non-Hermitian case, (6) holds when λ is the second-largest singular value of an

expander. If U(1), . . . , U(D) are chosen uniformly at random, then [19] proved that with high

probability the singular values of Em for m = O(N1/6) are bounded by N2(1/
√
D)m(1+o(1)).

This implies that the second-largest eigenvalue of E is ≤ 1√
D

(1 +O(log(N)N−1/6)), but does

not yield meaningful bounds on the second-largest singular value of E . Indeed, Tobias Osborne

has pointed out that when m = 1 and D = 2, the second largest singular value is equal to

unity. If Em turned out to have singular values nearly equal to D−m/2 then it would imply

that ≈ N/ǫ2 random unitaries sufficed to ǫ-randomize a state.

We now turn to tensor product expanders, considering classical tensor product expanders

in Section 2 and quantum tensor product expanders in Section 3. The mixing analysis above

generalizes in the tensor product case to give approximate t-designs. We will describe ran-

domized constructions of both classical and quantum tensor product expanders. Our basic

tool to prove that a random construction gives an expander with high probability is the trace

method (see, for example [8, 18]). The basic idea of the trace method is to bound eigenvalues

of some linear operator by bounding the trace of high powers of that operator. For example,

for a positive definite Hermitian operator whose two largest eigenvalues are equal to unity

and to λ, the trace of the mth power is at least equal to 1 + λm, so by bounding the trace

we bound λ. We focus on high powers of the operator so that the trace will be dominated

by the largest eigenvalues. The trace method will be adapted, with slight modifications, to
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the various cases, depending on whether classical or classical and quantum, and depending

on whether we consider an expander and or a tensor product expander.

2 Classical Tensor Product Expanders

In this section we define classical tensor product expanders, and give a random construction

of them. We then show an application of them to constructing quantum expanders.

2.1 Preliminaries, Definitions and Applications

We define an (N,D, λ, k) classical k-copy tensor product expander to be a set of N -by-N

permutation matrices P (s), 1 ≤ s ≤ D, with the property that the matrix L, defined by

Lk =
1

D

D∑

s=1

P (s)⊗k (11)

has some number, fN
k , eigenvalues equal to unity, with fN

k defined below, and then all other

eigenvalues less than or equal to λ in absolute value. (Again, if Lk is non-Hermitian then we

consider its singular values.)

We can obtain Hermitian operators Lk by considering D even, and imposing P (s+D/2) =

P (s)†. To obtain Hermitian Lk for D odd, we can instead impose P (s) = P (s)†; that is, the

permutation matrices correspond to perfect matchings. Both models corresponds to models

of random graphs for k = 1 discussed in [9].

These expanders can also be defined by graphs with Nk nodes, labelled (n1, n2, . . . , nk),

where 1 ≤ ni ≤ N . There is an edge from one node (n1, . . . , nk) to another node (n′
1, . . . , n

′
k)

if and only if one of the given permutations sends n1 → n′
1, . . . , nk → n′

k. We refer to this

graph as Gk. Alternatively, we can regard n1, . . . , nk as k different random walkers executing

a correlated random walk on the original graph.

The function fN
k is defined to be equal to the number of unit eigenvalues of the operator

1

N !

∑

π∈SN

P⊗k
π (12)

where the sum ranges over all permutations π, and Pπ is the permutation matrix corresponding

to permutation π. Since this operator performs an average over a group action, it is a

projector. Applying it to a computational basis state |n1, . . . , nk〉 maps it to the superposition

of all |n′
1, . . . , n

′
k〉 such that n′

i = n′
j iff ni = nj . Thus we can represent eigenstates by

partitions of {1, . . . , k} into ≤ N blocks, such that indices are equal within blocks and unequal

across blocks. For example, fN
1 = 1, fN

2 = 2 (corresponding to the sum of all states with

n1 = n2 and the sum of all states with n1 6= n2), f
N
3 = 5 (corresponding to the possibilities

n1 = n2 = n3, n1 = n2 6= n3, n1 = n3 6= n2, n2 = n3 6= n1, and n1 6= n2 6= n3 6= n1), and so

on. Note that if N ≥ k then the constraint that there be ≤ N blocks becomes superfluous,

and fN
k becomes simply the kth Bell number Bk, which counts the total number of ways of

partitioning a k-element set.

Any matrix Lk of the form (11) is block diagonal with fN
k different blocks depending

on the symmetry of the elements n1, . . . , nk under permutation; we call these subspaces

S1, S2, . . . , SfN
k

. By the arguments of the above paragraph, we can write the projector in
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(12) as
fn

k∑

a=1

|ua〉〈ua| ,

for some unit vectors |ua〉 ∈ Sa. These |ua〉 are unit eigenvalues not only of (12) but also any

Lk.

Rapid mixing: Given the spectral gap, repeatedly applying a classical tensor product

expander many times (of order k log(N)) generates an approximately k-wise independent

permutation. This means that the results of applying it to k distinct elements are almost

indistinguishable from applying a single permutation to each of the k elements. More precisely,

given an initial probability distribution, p, in any of the fN
k different subspaces Sa, we have

‖Lm
k p− ua‖1 ≤

√
N

k|λ|m, (13)

where ua is the l1 normalized eigenvector with eigenvalue unity in this subspace. This ap-

proach towards generating k-wise independent permutations has also been considered in [16].

Expanders are not always tensor product expanders. The requirement that a set of per-

mutations form a tensor product expander for k > 1 copies is more stringent than the re-

quirement for k = 1 copy, as it implies that the correlations between elements are destroyed

by the expander. For an example of a classical expander that does not give a tensor product

expander, consider any set of D permutation matrices, P (s), on N elements that gives a

classical expander. Define a new set of permutation matrices, P ′(s), on 2N elements, such

that P ′(s) = P (s) ⊕ P (s) for s = 1, . . . ,D. Finally, define the permutation P ′(D + 1) which

sends i to i + N if i ≤ N , and sends i to i − N if i > N . Then, these D + 1 different

permutation matrices define a k = 1 expander (they simply correspond to two copies of the

original graph, with the possibility of moving between the two copies by using permutation

matrix P ′(D+ 1)), but does not define a k = 2 expander: if two walkers, n1, n2 originally are

in the same copy as each other, then they remain in the same copy.

Another example comes from Cayley graphs. If G is a group with generators g1, . . . , gD

then the Cayley graph on G is defined by taking N = |G| and P (s)|g〉 = |gsg〉 for s =

1, . . . ,D. There are many Cayley graph expanders known (c.f. Section 11 of [8]), but applying

P (s) ⊗ P (s) to any |g〉 ⊗ |h〉 produces a new state |g̃〉 ⊗ |h̃〉 with g̃−1h̃ = g−1h. Thus, no

Cayley graph expander can be a tensor product expander unless it is modified in some way.

The limit of large k: Observe that any k-copy tensor product expander is also a k′-copy

tensor product expander for all k′ ≤ k. On the other hand, even if k > N then the k

walkers can still occupy only at most N positions. Thus if a map is an N -copy tensor product

expander than it is also a k-copy tensor product expander for all k.

An equivalent condition to {π1, . . . , πD} ⊂ SN being an N -tensor product expander is that

the Cayley graph generated by {π1, . . . , πD} is an expander. The spectrum of this Cayley

graph is identical (up to multiplicity) to that of Lk for all k ≥ N (with P (s) defined to be

Pπs
).

2.2 Random permutations are tensor product expanders

The question then naturally arises whether k > 1 tensor product expanders actually exist.

Of course there is a trivial D = N ! construction where we take {π1, . . . , πN} = SN and
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achieve λ = 0 for all k. We would prefer, though, that D = O(1). The construction of [16]

nearly achieves this with D = poly log(N) and λ = 1 − 1/poly(k, logN). For a constant

degree construction, we can use Kassabov’s expander[17] on SN . This achieves D = O(1)

and λ equal to a constant strictly smaller than 1 for all N and k. Additionally, it can be

implemented in time poly log(N).

In this section, we give a randomized construction of tensor product expanders for any

even D ≥ 4 and with λ ≈ λ
1

k+1

H , where

λH :=
2
√
D − 1

D
. (14)

Theorem 2 Choose π1, . . . , πD/2 ∈ SN at random and then take πs+D/2 = π−1
s . Let

P (s) = Pπs
. For any k, let λ denote the fN

k + 1st largest eigenvalue of Lk. Then for any

c > 1,

Pr
[
λ ≥ c

(
λ

1
k+1

H +O(
log(k) + log(log(N))

log(N)
)
)]

≤ c(−k+1) log1/λH
(N), (15)

where Pr[...] denotes probability and λH depends on D as given in Eq. (14).

Note that since λ
1/(k+1)
H converges to unity as k becomes large, the result (15) is only

meaningful for k = O(log(N)/ log(log(N))). Constants depending on D are also hidden

inside of the O(...) notation. The result is likely far from optimal, since numerical studies

indicate that for fixed k and large N , the largest non-trivial eigenvalue λ approaches λH . This

result for the case k = 1 was only recently proven[9]. Our proof, which gives a weaker bound

on the expectation value of λ roughly follows the presentation of the trace method in [8, 18],

with some modifications.

Proof of Theorem 2: We will apply the trace method separately in each of the subspaces

Sa. It suffices to consider only one such subspace Sa, the subspace SfN
k

in which all of the

n1, n2, . . . , nk differ from each other, since every eigenvalue of Lk is an eigenvalue of Lk re-

stricted to SfN
k

. For example, consider the case k = 2. We have two different subspaces,

one with n1 = n2 and one with n1 6= n2. The eigenvectors of the first subspace, of the form∑
i p(i)|i〉|i〉, correspond to eigenvectors of L1 of the form

∑
i p(i)|i〉. Given such an eigenvec-

tor, we can construct an eigenvector in the second subspace equal to
∑

i

∑
j 6=i p(i)|i〉|j〉 with

the same eigenvalue, as claimed.

Let E[...] denote an average over different choices of permutation matrices. Then for any

even m,

E[|λ|] ≤ (E[tr(Lm
k R)] − 1)1/m, (16)

where R is the projector onto the given subspace. The expectation value E[tr(Lm
k R)] equals

( 1

D

)m D∑

s1=1

D∑

s2=1

...
D∑

sm=1

E[tr(P (s1)P (s2)...P (sm)R)]. (17)

If for some i we have si = si+1 +D/2, then P (si)P (si+1) = I, and we can remove that pair

of permutation matrices from the trace above. Similarly, if sm = s1 + D/2, then we can

remove the first and last permutation matrices from the trace, exploiting the cyclic invariance

of the trace and the vanishing commutator [P (s), R] = 0. We can consider these operations

as acting on a word s1, s2, ..., sm on an alphabet {1, ...,D}. We define a reduced word by
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removing pairs of letters of the form s, s + D/2. Similarly, if the word ends with a letter s

and begins with a letter s+D/2, we remove this pair also. We repeat these removals until no

further removals are possible. The result is a reduced word of length m0 ≤ m; the resulting

sequence we write s′
1, s

′
2, ..., s

′
m0 . There are at most

(D − 1)m/22m = Dmλm
H (18)

choices of s1, ..., sm which give m0 = 0; the number of these choices is equal to Dm times the

return probability of a random walk of length m on a Cayley tree of degree D. For these

choices, we have E[tr(P (s1)P (s2)...P (sm)R)] = tr(R) ≤ Nk.

We now consider the other choices of s1, ..., sm, where m0 > 0. In general,

E[tr(P (s′
1)P (s′

2)...P (s′
m0)R)] ≤ NkE[tr(P (s′

1)P (s′
2)...P (s′

m0)R1,2,...,k)], (19)

where R1,2,...,k projects onto the state with n1 = 1, n2 = 2, ..., nk = k. To compute this

expectation value, we define va
0 = a, for 1 ≤ a ≤ k. Then, define va

i , for i ≥ 1 and 1 ≤ a ≤ k,

to be πs′
i
(va

i−1). Then, the probability that va
m0 = a for all a is equal to the desired result.

We compute this probability as follows. Consider this as happening sequentially, where first

we define va
1 for all a, then we define va

2 , and so on. We say that a choice of va
i is “free” if at

no previous step j < i did we compute πs′
j
(vb

j−1) with s′
j = s′

i and vb
j−1 = va

i−1. If a choice

of va
i is free, and if t values of πs′

i
have been previously revealed, than we can simply pick

va
i at random from the N − t possibilities, thus revealing some of the information about the

permutation πsa
i
, and increasing t by one for that permutation. If a choice is not free, then it

is “forced”, in which case we have no choice about the value of πs′
i
(va

i−1).

We say that a coincidence occurs at step i for walker a if this is a free step and the

randomly selected vertex coincides with a previously selected vertex (previously selected by

any of the walkers). Note that for va
m0 to equal a for all a, we must have at least k coincidences.

There are two cases: either there are at least k + 1 coincidences, or else there are exactly k

coincidences.

The probability of there being at least k+1 coincidences can be computed as follows. Let

i1, i2, ..., ik+1 be the steps of the first k+1 coincidences and a1, a2, ..., ak+1 be the corresponding

walkers. The probability of having these coincidences for given i1, ... and a1, ... is bounded by

(mk/(N−mk))k+1. Summing over all possible steps and walkers, we find that the probability

of having at least k + 1 coincidences is bounded by

mk+1kk+1(mk/(N −mk))k+1. (20)

If there are exactly k coincidences, then each walker has exactly one coincidence given

that va
m0

= a for all a. There are two possibilities: either all of the coincidences occur on the

last step, or at least one coincidence does not occur on the last step. The probability of the

first case is at most (1/(N−mk))k. If at least one coincidence does not occur on the last step,

then let walker b be the first walker to have a coincidence, occurring on step j. Note that

each of the vertices 1, ..., a must be the randomly selected vertex on exactly one coincidence,

again given that va
m0

= a for all a. Because there are no further coincidences for walker b, we

have s′
i = s′

i+j for all i. The fraction of reduced words of length m0 that obey this constraint

for given j ≤ m0/2 is at most (D − 1)−m0/2. The fraction of words that have a reduced
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word of length m0 is at most (D − 1)m0/2λm
H . Therefore, the fraction of words that have a

reduced word obeying this constraint, after summing over j, is at most mλm
H . The probability

of having these coincidences is bounded by (m/(N −mk))k, where the factor of m arises from

the choice of step on which the coincidence occurs (this is in fact a large overestimate). The

product of these probabilities is mλm
H(m/(N −mk))k. The total of these two possibilities is

(1/(N −mk))k + (m/(N −mk))kmλm
H). (21)

Adding the sum of the expectation value over words with m0 = 0 (which is bounded by

Nkλm
H by Eq. (18) to Nk times the sum of (20,21), we find that

E[tr(P (s′
1)P (s′

2)...P (s′
m0)R)] ≤ Nkλm

H +Nkmk+1kk+1(mk/(N −mk))k+1

+(N/(N −mk))k + (Nm/(N −mk))kmλm
H . (22)

and therefore

E[tr(P (s′
1)P (s′

2)...P (s′
m0)R)] − 1

≤ Nkλm
H +Nkmk+1kk+1(mk/(N −mk))k+1

+[(N/(N −mk))k − 1] + (Nm/(N −mk))kmλm
H (23)

= Nkλm
H +Nkmk+1kk+1(mk/(N −mk))k+1

+O(mk2/N) + (Nm/(N −mk))kmλm
H .

We pick

m = (k + 1) log1/λH
(N) (24)

to minimize this expectation value, finding

(E[tr(P (s′
1)P (s′

2)...P (s′
m0)R)] − 1)1/m ≤ λ

1/(k+1)
H (O(mk))(k+1)/m. (25)

Applying Markov’s inequality then yields the proof of the Theorem.

2.3 Quantum expanders from classical tensor product expanders

One application of k = 2 classical tensor product expanders is to constructing quantum

expanders. We give two constructions.

The first approach was introduced, but not formally analyzed, in [3]. Let P (s) be a set

of random permutation matrices defining a k = 2 tensor product expander, as in the random

construction of a k = 2 tensor product expander above. Then, define σ(s), for s = 1...D, to

be a diagonal matrix. For s = 1, ...,D/2 we choose σ(s) to have diagonal entries ±1 chosen

independently at random and we choose σ(s + D/2) = P (s)σ(s)P (s)†. Then, in [3] it was

shown numerically that the A matrices,

A(s) =
1√
D
P (s)σ(s), (26)

define a quantum expander with high probability. Note that the choice of σ(s+D/2) is such

that A(s +D/2) = A(s)† = (1/
√
D)σ(s)P (s)† so that this is a Hermitian expander because

P (s) = P (s+D/2)†. Numerically, λ was observed to approach λH for large N . We now prove

that we do indeed get a quantum expander with high probability, but with a weaker bound

on λH .
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Theorem 3 Choose π1, . . . , πD/2 ∈ SN at random and then take πs+D/2 = π−1
s . Let

P (s) = Pπs
. Choose σ(s) as described above. Let λ denote the second largest eigenvalue of

the map with Kraus operators given by the matrices A(s) in Eq. (26). Then, for any c > 1,

Pr
[
λ ≥ c

(
λ

1
3

H +O(
log(log(N))

log(N)
)
)]

≤ c−3 log1/λH
(N). (27)

The Hermitian, completely positive map E defined by the A matrices in (26) sends a

diagonal matrix to a diagonal matrix and an off-diagonal matrix to an off-diagonal matrix.

So, we consider the spectrum of E in the diagonal and off-diagonal sectors separately. In the

diagonal sector, the spectrum of E is the same as that of the k = 1 expander defined by the

given permutation matrices, and hence has a gap between the largest eigenvalue, equal to

unity, and the next largest eigenvalue.

The off-diagonal sector requires a little more work. We again use the trace method. Let

λ be the largest eigenvalue in absolute value in the off-diagonal sector. Let M(i, j) be an

N -by-N dimensional matrix with a one in the ith row and jth column, and zeroes everywhere

else, so that these form a basis for the space of N -by-N matrices. The M(i, j) with i 6= j

form a basis for the space of off-diagonal matrices. Define (M,N) to be an inner product on

the space of Nk-by-Nk dimensional matrices by (M,N) = tr(M†N). Then for any even m,

E[|λ|] ≤
(
E[
∑

i6=j

(
M(i, j), Em(M(i, j))

)
]
)1/m

. (28)

Note that compared to Eq. (16), a factor of unity is not subtracted from the expectation value

on the right-hand side of Eq. (28).

The evaluation of the right-hand side of Eq. (28) proceeds analogously to that of Eq. (16).

The computation in the case m0 = 0 is identical. In the case m0 > 0, we again define

coincidences and paths. The only difference is that now rather than just computing the

probability that va
m0 = a for all a = 1, 2, the paths come in with signs which may be plus or

minus one. This can only reduce the contribution of the terms with m0 > 0. We bound the

case with k + 1 coincidences as before. We also bound the case with k coincidences not all

occurring on the last step as before. The only difference is the case in which all coincidences

happen on the last step i = m0. The probability of this happening is (1/N)2. The sign,

however, is completely random; it is equally likely to be plus or minus one. Thus, the paths

with exactly k coincidences, all occurring on step i = m0, contribute zero to the expectation

value (28). Thus,

E[|λ|m] ≤ (Nk +m)λm
H +Nkmk+1kk+1(mk/(N −mk))k+1. (29)

Picking m as before, we find that E[|λ|] ≤ λ
1/3
H (1 + O(log(log(N))/ log(N)). Applying

Markov’s inequality yields the theorem.

We now describe our second construction of a quantum expander from a classical tensor

product expander.

Theorem 4 Suppose {P (1), . . . , P (D)} form a (N,D, 1 − ǫ, 2) classical tensor product

expander (i.e. k = 2). Assume that N ≥ 2. Let

Z =

N∑

j=1

|j〉〈j| e 2πij
N
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and p = 1/(1 + ǫ). Define a quantum operation E(M) with D + 1 Kraus operators√
p
DP (1), . . . ,

√
p
DP (D),

√
1 − pZ. Then E is a (N,D + 1, 1 − ǫ

48 ) quantum expander.

Thus, any constant-gap classical 2-TPE can be used to construct a constant-gap quantum

expander. No attempt has been made to optimize the constant 48, which we believe can be

made arbitrarily close to one when N is large and ǫ is close to 1.

Note that
√

p
DP (1), . . . ,

√
p
DP (D),

√
1 − pZ is not in general Hermitian, but if

{P (1), . . . , P (D)} is Hermitian then {
√

p
DP (1), . . . ,

√
p
DP (D),

√
1−p
2 Z,

√
1−p
2 Z†} is a Her-

mitian (N,D+ 2, 1 − ǫ/48) expander; this is proved by using the triangle inequality to relate

its gap to the gap of the expander in Theorem 4.

Proof of Theorem 4: The idea is that the classical TPE randomizes the diagonal elements

of the density matrix simply because it is an expander, and it randomizes the off-diagonal

elements because it is a k = 2 TPE. Next the phase operation Z adds a phase to the off-

diagonal elements so that they are no longer fixed by the classical TPE. Thus the only fixed

state will be the identity matrix.

More formally, let |ϕ1〉 = 1√
N

∑N
i=1 |i〉|i〉 and |ϕ2〉 = 1√

N(N−1)

∑
i6=j |i〉|j〉. These two

states form an orthonormal basis for the invariant subspace of 1
D

∑D
s=1 P (s) ⊗ P (s). Thus

the fact that P (1), . . . , P (D) form a 2-TPE implies the bound

∥∥∥∥∥
1

D

D∑

s=1

P (s) ⊗ P (s) − ϕ1 − ϕ2

∥∥∥∥∥ ≤ λ.

Next, a short calculation shows that 〈ϕ2|Z|ϕ2〉 = −1/(N − 1). Now apply the following

Lemma to the subspace orthogonal to |ϕ1〉.
Lemma 1 Let Π be a projector and let X and Y be operators such that ‖X‖ ≤ 1, ‖Y ‖ ≤ 1,

ΠX = XΠ = Π, ‖(I − Π)X(I − Π)‖ ≤ 1 − ǫX and ‖ΠYΠ‖ ≤ 1 − ǫY . Assume 0 < ǫX , ǫY < 1.

Then for any 0 < p < 1, ‖pX + (1 − p)Y ‖ < 1. Specifically,

‖pX + (1 − p)Y ‖ ≤ 1 − ǫY
12

min(pǫX , 1 − p). (30)

Setting p = 1/(1 + ǫX), we obtain

‖pX + (1 − p)Y ‖ ≤ 1 − ǫXǫY
12(1 + ǫX)

≤ 1 − ǫXǫY
24

. (31)

The Lemma is proved in Appendix 1. We apply the Lemma by taking X = 1
D

∑D
s=1 P (s) ⊗

P (s)−ϕ1, Y = Z⊗Z∗ −ϕ1 and Π = ϕ2. Then plugging ǫX = ǫ and ǫY = 1−1/(N−1) ≥ 1/2

into (31) completes the proof of Theorem 4.

3 Quantum Tensor Product Expanders

In this section we define quantum tensor product expanders and show that random unitaries

provide a way of constructing tensor product expanders. We begin with some preliminaries

and definitions, present applications to the Solovay-Kitaev problem of approximating unitaries

by a string of elementary operations, and finally prove that random unitaries give tensor

product expanders. The proof of this last statement begins in subsection 3.3; it closely

follows [19] and should be read in conjunction with that paper.
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3.1 Preliminaries, Definitions, and Applications

Suppose we have a collection of unitaries {U(1), . . . , U(D)} ∈ UN . Define a quantum operation

Ek that applies U(s)⊗k for s ∈ {1, . . . ,D} chosen uniformly at random. In other words

Ek(M) =
1

D

D∑

s=1

U(s)⊗kM(U(s)†)⊗k, (32)

where M is an Nk × Nk matrix. Since an Nk × Nk matrix can also be viewed as an N2k-

dimensional vector, we can also interpret Ek as a linear operator on an N2k-dimensional vector

space. Define this operator to be

Êk :=
1

D

D∑

s=1

U(s)⊗k ⊗ (U(s)∗)⊗k. (33)

Note that Ek and Êk are isospectral.

In previous work[19, 4, 5] E1 was said to be a (N,D, λ) quantum expander if the second-

largest eigenvalue of Ê2 was ≤ λ. In fact, the definition of quantum expanders included even

quantum operations that were not mixtures of unitaries, as long as they could be expressed

using ≤ D Kraus operators. Here we will change notation from [19, 4, 5] slightly. We say that

a set of unitaries {U(1), . . . , U(D)} is a (N,D, λ, k) tensor product expander if the operator

Ek has FN
k (defined below) eigenvalues equal to one, and all of its other eigenvalues have

absolute value ≤ λ. This differs from the notation of [19, 4, 5] in that the set of unitaries,

rather than the quantum operation, constitutes the quantum expanderb. When N and D are

understood, we sometimes simply say that {U(1), . . . , U(D)} are a k-tensor product expander

with gap 1 − λ.

We define FN
k to be the rank of the projector

T̂k :=

∫

U∈UN

U⊗k ⊗ (U∗)⊗kdU

or equivalently of the operation Tk, which is defined by

Tk(M) =

∫

U∈UN

U⊗kM(U†)⊗k. (34)

(Throughout the paper the integration measure dV will be the Haar measure.) This map is

the “twirling” operation[2]. Since Tk is a Hermitian map and Tk(Tk(M)) = Tk(M), the map

Tk(M) has all eigenvalues equal to zero or unity.

For π ∈ Sk, we define the Nk ×Nk matrix PN (π) is defined to be

PN (π) =
N∑

i1=1

· · ·
N∑

ik=1

|i1, . . . , iN 〉〈iπ(1), . . . , iπ(N)|.

Since PN (π) commutes with any matrix of the form U⊗k, it follows that Tk(PN (π)) =

Ek(PN (π)) = PN (π) for any π. We claim that the PN (π) (and their linear combinations)

bOne can slightly generalize this by defining a set of unitaries and a set of associated probabilities to be a
tensor product expander; however in this paper we consider applying each unitary with equal probability
summing to unity.
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constitute all of the unit eigenvalues of Ek. This fact follows from Schur-Weyl duality, and

specifically Thm 3.3.8 of [24] which states that Tk(M) = M if and only if M is a linear

combination of PN (π) operators. Thus FN
k = dimSpan{PN (π) : π ∈ Sk}.

An important special case is when N ≥ k. In this case, the set {PN (π)|1, 2, . . . , k〉 : π ∈
Sk} is linearly independent, which implies that {PN (π) : π ∈ Sk} is linearly independent and

thus that FN
k = k!.

In the quantum case, tensor product expanders give us a way to approximate the twirling

operator Tk of [2]. This is because

‖Em
k − Tk‖∞ ≤ λm, (35)

so whenever λ < 1, E∞
k = Tk. Let us consider various other possibilities for implementing

twirling as a sum of different unitary transformations: one approach to exactly implementing

the twirling operation is to use t-designs[1], but the number of unitaries that must be im-

plemented in this case grows with N . Another approach was discussed in [20], which avoids

having the number of unitaries grow in N , but requires the ability to implement a number

of unitaries growing linearly in the logarithm of the error of the approximation. In contrast,

tensor product expander require only the ability to implement a constant number of unitaries

to get arbitrarily good approximations. This is a definite advantage; however, in practice, our

construction of tensor product expanders here, which relies on the ability to construct random

unitary operations, probably cannot be efficiently implemented using gates; instead, we would

like to efficiently implement a deterministically constructed tensor product expander. This

raises the interesting question of whether the constructions of [5] can lead to tensor product

expanders also.

The limit of large k: The situation when k is large has some similarities to the classical

case. It still holds that any (N,D, λ, k) quantum tensor product expander is also a (N,D, λ, k′)
quantum tensor product expander for all k′ ≤ k. In particular, if a set of unitaries forms a

(N,D, λ,∞) quantum tensor product expander than it is also a (N,D, λ, k) quantum tensor

product expander for any finite k. This is equivalent to generating a Cayley graph expander

on UN . One difference between the quantum and classical cases is that there is no upper

bound to the size of irreps of UN , like there is for SN .

Note that constant degree Cayley graph expanders are known for U2; indeed, choosing the

matrices at random will yield an expander with probability one[26]. However, no proof of this

fact is known for N > 2.

3.2 Solovay-Kitaev gate approximation

One application of tensor product expanders is to the problem of approximating an arbi-

trary V ∈ UN with a string of gates from a fixed universal set {U(1), . . . , U(D)}. The

fact that {U(1), . . . , U(D)} is universal means that 〈U(1), . . . , U(D)〉 is dense in UN (op-

tionally neglecting an overall phase). This means that for any V ∈ UN and any ǫ > 0,

there exists a string s1, . . . , sm such that U(s1)U(s2) · · ·U(sm) is within a distance ǫ of V .

Often we also want to know (a) how quickly m grows with 1/ǫ and (b) how long it takes

to find s1, . . . , sm. When {U(1), . . . , U(D)} contain their own inverses, the Solovay-Kitaev

theorem[21] gives a poly log(1/ǫ) time (for fixed N) algorithm to find an ǫ-approximation with

m = O(log3+o(1)(1/ǫ)). Very little is known in the case without access to inverses, except
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that U(s)† can be simulated to error ǫ using O(1/ǫN
2

) applications of U(s), meaning that the

Solovay-Kitaev construction can be used with this amount of overhead.

Turning to lower bounds, observe a ball of radius ǫ in UN has volume Θ(ǫN
2

). This im-

plies that to approximate all strings to within error ǫ requires Ω((1/ǫ)N2

) different unitaries,

or equivalently a Ω(N2 log 1/ǫ) string length. A long-standing open question is whether the

Solovay-Kitaev approximation can in general be improved to use the optimal O(log 1/ǫ) num-

ber of gates. Such optimally short approximations are known to exist whenever a particular

random walk on UN has a gap[22]: specifically, the walk consisting of multiplying by U(s) for

s randomly chosen from 1, . . . ,D. For U2, it was recently proven that generic U(1), . . . , U(D)

are gapped[23] and thus yield short approximating strings. However, the situation for UN for

N > 2 remains open.

In this section we will prove that when k is sufficiently large, unitaries forming k-tensor

product expanders yield optimal O(N2 log 1/ǫ)-length ǫ-approximations for any gate in UN .

Theorem 5 . Suppose {U(1), . . . , U(D)} form a k-tensor product expander with gap 1−λ
for k ≫ N3 log2(1/ǫ)

ǫ . Then for any V ∈ UN there exists a string s1, . . . , sm ∈ {1, . . . ,D} with

m = O(N2 log1/λ(1/ǫ)) and d(V,U(s1)U(s2) · · ·U(sm)) ≤ ǫ.

Here we define the distance between two unitaries d(U, V ) by

d(U, V ) = min
φ∈[0,2π]

‖U − eiφV ‖2 = 2N − 2| trU†V |,

so that it ignores overall phase.

The main result from [22] can be thought of a weaker version of Theorem 5: it requires

k = ∞ to achieve the same conclusion. Unfortunately, Theorem 6 only shows that generic

sets of unitaries are k-tensor product expanders for k ∼ N1/6/ log(N). Thus, at present the

existence of expanders satisfying the assumptions of Theorem 5 is a nontrivial conjecture. It

is possible that there exists some strengthening of the results of Theorem 6 which will allow

us to show that generic unitaries fulfill the assumptions of Theorem 5.

Proof of Theorem 5: Let |Φ〉 = 1√
N

∑N
i=1 |i〉|i〉 be the maximally entangled state on

CN ⊗ CN . Define ρ(U) =
[
(U ⊗ I)Φ(U† ⊗ I)

]⊗k
. Observe that

tr ρ(U)ρ(V ) = | trU†V |2k/N2k =

(
1 − d(U, V )

2N

)2k

(36)

Let Bǫ/3 be the ball of radius ǫ/3 around the identity: Bǫ/3 = {U |d(U, I) ≤ ǫ/3}. Let

V ol(ǫ/3) denote the volume of Bǫ/3 = O((ǫ/3)N2

). Define

ρǫ(U) =
1

V ol(ǫ/3)

∫

V ∈Bǫ/3

ρ(V U)dV, (37)

Similarly we define

ρH =

∫

V ∈UN

ρ(V )dV. (38)

These states are normalized so that tr ρǫ(U) = tr ρH = 1. Since ρ(V ) ≥ 0 for all V , we have the

operator inequality ρǫ(U) ≤ ρH/V ol(ǫ/3) for any U . Also observe that ρH = (Tk⊗id⊗k
N )(ρ(U))

for any U , where idN denotes the identity operation on N ×N density matrices.
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We will find it convenient to think of density matrices as vectors with the Hilbert-Schmidt

inner product 〈A,B〉 = trA†B. In this picture Tk is a projector, and so

tr ρǫ(U)ρH = tr ρǫ(U)(Tk ⊗ id⊗k
N )(ρǫ(U)) = tr ρ2

H .

To bound tr ρ2
H , observe that the support of ρH lies within Span{|ψ〉⊗k : |ψ〉 ∈ CN2}, which

(according to [25, 24]) has dimension N2 + k − 1N2 = k(k + 1) · · · (k +N2 − 1)/N2! ≤ kN2

.

Thus tr ρ2
H ≥ k−N2

.

Now we use the fact that ‖Em
k − Tk‖∞ ≤ λm together with Cauchy-Schwartz to bound

tr ρǫ(I)Em(ρǫ(U)) ≥ tr ρǫ(I)ρH − λm tr ρǫ(I)
2 ≥ tr ρ2

H

(
1 − λm

V ol(ǫ/3)2

)
≥ 1

2
tr ρ2

H ≥ 1

2kN2 ,

(39)

where in the second-to-last step we have assumed

m ≥ log(2/V ol(ǫ/3)2)/ log(1/λ) = O(N2 log1/λ(1/ǫ)).

On the other hand, if there is no string s1, ..., sm such that d(U(s1)U(s2)...U(sm), U) ≤ ǫ,

then

tr ρǫ(I)Em(ρǫ(U)) ≤
(
1 − ǫ

6N

)2k

≤ e− kǫ
3N . (40)

If k/ log k ≫ N3/ǫ then (39) and (40) cannot simultaneously hold. Therefore there must

exist at least one string s1, . . . , sm for which d(U(s1)U(s2)...U(sm), U) ≤ ǫ.

3.3 Trace Method and Schwinger-Dyson Equations

The next three sections are devoted to the expansion properties of randomly chosen unitaries.

Recall that we would like to construct a quantum tensor product expander by randomly

choosing U(1), . . . , U(D) ∈ UN . There are two cases. In the non-Hermitian case, the unitary

matrices U(s) are chosen independently with the Haar measure. In the Hermitian case, D

is even and the unitary matrices U(s) for s = 1, . . . ,D/2 are chosen independently with the

Haar measure and U(s+D/2) = U(s)†, so that Ek is a Hermitian operator. We focus on the

Hermitian case, and the techniques can be readily extended to cover the non-Hermitian case.

Our main result is that for random U(s), with high probability we do indeed get a tensor

product expander:

Theorem 6 . Let {U(1), . . . , U(D/2)} be chosen randomly with the Haar measure from

the unitary group UN , and let U(s + D/2) = U(s)†. Let k ≤ O(N1/6/ log(N)) and let λ

denote the FN
k + 1st eigenvalue of Ek as defined in (32). Then, for any c > 1,

Pr
[
λ ≥ c(1 + O(k log(N)N−1/6)λH

]
≤ c−(1/4k)N1/6

, (41)

where λH depends on D and is given in Eq. (14).

We use a trace method to bound the eigenvalues of Ek(M). We have

∑

i1,i2,...,ik

∑

j1,j2,...,jk

(
M(i1, j1) ⊗M(i2, j2) ⊗ ...⊗M(ik, jk), Em

k (M(i1, j1) ⊗

⊗M(i2, j2) ⊗ ...⊗M(ik, jk))
)

=

N2k∑

a=1

|λa|m ≥ k! + |λ|m, (42)
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where we pick m to be an even integer. We will derive bounds on the expectation value of

the trace to bound the expectation of |λ|m. Eq. (42) can be re-written as

k! + |λ|m ≤
( 1

D

)m D∑

s1=1

D∑

s2=1

...

D∑

sm=1

tr(U(sm +D/2)...U(s2 +D/2)U(s1 +D/2))k

tr(U(s1)U(s2)...U(sm))k]. (43)

Let E[...] denote the average over the unitary group. Averaging Eq. (43) we find

E1,k ≡
( 1

D

)m D∑

s1=1

D∑

s2=1

...

D∑

sm=1

E0,k(s1, ..., sm) ≥ k! +E[|λ|m], (44)

E0,k(s1, ..., sm) ≡ E[tr(U†(sm)...U†(s2)U
†(s1))

ktr(U(s1)U(s2)...U(sm))k]

= E[tr(U(sm +D/2)...U(s2 +D/2)U(s1 +D/2))k

tr(U(s1)U(s2)...U(sm))k]. (45)

As in [19], we write the average in Eq. (45) as an average of the form

E[L1L2...Lc], (46)

where

L1 = tr(U(s1,1)U(s1,2)...U(s1,m1
)), L2 = tr(U(s2,1)U(s2,2)...U(s2,m2

)), ... (47)

Here we have an average of c traces, each of which is a product of some number of unitary

matrices. In particular, Eq. (45) has c = 2k, with L1 = L2 = ... = Lk = L†
k+1 = ... = L†

2k.

The Schwinger-Dyson equations for a product of this form are[19]:

E[tr(U(s1,1)U(s1,2)...U(s1,m1
))L2...Lc] (48)

= − 1

N

m1∑

j=2

δs1,1,s1,j
E[tr(U(s1,1)...U(s1,j−1))tr(U(s1,j)...U(s1,m1

))L2...Lc]

+
1

N

m1∑

j=2

δs1,1,s1,j+D/2
E[tr(U(s1,2)...U(s1,j−1))tr(U(sj+1,1)...U(s1,m1

))L2...Lc]

− 1

N

c∑

l=2

ml∑

j=1

δs1,1,sl,j
E[tr(U(s1,1)...U(s1,m1

)U(sl,j)U(sl,j+1)...U(sl,j−1))

L2...Ll−1Ll+1...Lc]

+
1

N

c∑

l=2

ml∑

j=1

δs1,1,sl,j+D/2E[tr(U(s1,2)...U(s1,m1
)U(sl,j+1)U(sl,j+2)...U(sl,j−1))

L2...Ll−1Ll+1...Lc].

Note that in the above equation an expression like U(sl,j+1)U(sl,j+2)...U(sl,j−1) means

U(sl,j+1)U(sl,j+2)...U(sl,ml
)U(sl,1)U(sl,2)...U(sl,j−1).
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Our general algorithm for reducing traces starts by canceling all pairs of matrices U(s)U(s+

D/2) appearing successively in the same trace, and replacing tr(I) by N . We then apply

Eq. (48), repeating the cancellation of successive U(s)U(s+D/2) and replacement of tr(I) by

N on each iteration. A term terminates at a given level n if there are no matrices left after

n iterations.

Let m0
1 be the length of the trace after canceling successive U(s)U(s + D/2) before any

iterations; on every successive iteration, the length of the first trace, m1, is bounded by m0
1.

As in [19], the number of different choices of s1, ..., sm which give rise to a given m0
1 is bounded

by

(D − 1)m0
1/2(D − 1)m/22m. (49)

This number is equal to Dm times the probability that a random walker on a Cayley tree

arrives at a distance m0
1 from the starting point after a walk of m steps. This number

is independent of the particular values of s1,1, ..., s1,m0
1
. There are [D/(D − 1)](D − 1)m0

1

different possible values of s1,1, ..., s1,m0
1

and therefore the total number of choices of s1, ..., sm

which give rise to a given choice of s1,1, ..., s1,m0
1

is bounded by

D − 1

D

( 1√
D − 1

)m0
1

(D − 1)m/22m. (50)

The number of terms terminating at the nth level is bounded by

(2km− 1)n. (51)

To see this, note that at each iteration of the Schwinger-Dyson equation, the number of terms

on the right-hand side is bounded by the number of matrices on the left-hand side minus one.

Initially, there are 2km matrices, and this number does not increase under Eq. (48).

We can estimate the value of a term which terminates at a given level n > 1 as follows.

First, there is a sign equal to plus or minus 1. Next, there is a factor of (1/N)n. Finally, there

is a factor of N for each trace of the form tr(I) that appeared in this process. Suppose there

are p such traces, giving a factor of Np. How big can p be? Initially we have c = 2k different

traces. The given term at level n arose from a specific choice of terms on the right-hand side

of Eq. (48) on the first iteration. This specific choice has k1 different traces in it, with k1

equal to either k − 1 or k + 1. After the second iteration there are k2 traces, then k3, and so

on. The number of traces k2, k3, ... can be determined as follows: an application of Eq. (48)

may increase the number of traces by one if the term arises from the first or second line on

the right-hand side, or may decrease the number of traces by one if the term arises from the

third or fourth line on the right-hand side of Eq. (48). Next, some of the traces may be trivial,

being equal to tr(I). In the event that the term arose from the first, second, or third line of

Eq. (48) it is not possible for any of the traces to be trivial, under the assumption that any

repetitions of the form U(s)U(s + D/2) have been previously replaced by I in the trace on

the left-hand side of the equation. However, in the event that the term arose from the fourth

line, then it is possible for one of the traces to be trivial, increasing p by one. Thus, for each

b ≤ n, kb − kb−1 is equal to either +1,−1, or −2. Let q be equal to the number of times the

first or second line was used from Eq. (48) and n− q equal the number of times the third or

fourth line was used. Then, in order for all traces to be trivial in this particular term resulting
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from n iterations of Eq. (48),

2k + q − (n− q) − p = 0. (52)

Also, since p can only increase when a term from the fourth line is used,

p ≤ n− q. (53)

Thus,

p ≤ ⌊(2k + n)/3⌋. (54)

Therefore, the value of a term terminating at the nth level, n > 0, is bounded in absolute

value by

N⌊(2k+n)/3⌋−n. (55)

Note that if m0
1 > 0 then there are no terms terminating at level n with n < k, so for m0

1 = 0,

the trace is equal to N2k, while for m0
1 > 0, the terms are bound in absolute value by N0

(this bound is only reached if k = n).

Eq. (48) generates an infinite series, whose nth term is the sum of all terms terminating

at level n. As in [19], this series is absolutely convergent for 2km < N . In fact, the following

stronger claim holds: Eq. (48) generates an absolutely convergent series for 2km − 1 < N

which converges to the expectation value of the trace. To see this, note that the value p above,

the number of traces of I, is always bounded by 2km. Thus, the value of a term terminating

at the nth level is bounded by

N2kmN−n. (56)

Depending on n, sometimes (55) gives a better bound and sometimes (56) gives a better

bound, but to estimate convergence we will use (56). Eq. (51) shows that the number of

terms terminating at level n is bounded by (2km− 1)n. Thus, the absolute value of the sum

of terms terminating at level n is bounded by N2km((2km−1)/N)n, and so for 2km−1 < N ,

the series is absolutely convergent. Further, a term which has not terminated at the nth level

contains at most 2km traces in it, and hence is bounded in absolute value by N2km(1/N)n.

Therefore, the sum of all terms which have not terminated at the nth level is also bounded

by N2km((2km− 1)/N)n), and hence for 2km− 1 < N the series converges to the average of

the trace.

3.4 Example

We now work out a simple example to give some idea of the use of the Schwinger-Dyson

equations. This example will also be used later in the idea of “complete rung cancellation”

and gives intuition behind the claim that for N ≥ k we have k! eigenvalues equal to unity.

Let the matrix X be chosen from the unitary group with the Haar measure and evaluate the

expectation value for N ≥ k

E[
(
tr(X)tr(X†)

)k

]. (57)

For k = 1, a single application of Eq. (48) shows that this is equal to unity. For k = 2, we

find

E

[(
tr(X)tr(X†)

)2
]

= 2E
[(

tr(X)tr(X†)
)]

− (1/N)E
[
tr(XX)

(
tr(X†)2

)]
(58)
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= 2 + (1/N)2E

[(
tr(X)tr(X†)

)2
]

− 2(1/N)2E
[
tr(X)tr(X†)

]

= 2 + (1/N)2E

[(
tr(X)tr(X†)

)2
]

− 2(1/N)2.

For N ≥ 2, this shows that E[
(
tr(X)tr(X†)

)2

] = 2.

It is interesting to see what happens to the expectation value in Eq. (58) for N = 1, k = 2.

Then, the last line Eq. (58) gives simply E[
(
tr(X)tr(X†)

)2

] = E[
(
tr(X)tr(X†)

)2

], giving

no information about the trace. For general N , the sum of terms terminating at level

1 is equal to zero, while the sum of terms terminating at levels 2, 3, 4, 5, 6... is equal to

2,−2/N, 2/N,−2/N2, 2/N2, ... respectively. Thus, we do not have a convergent series for

N = 1, k = 2.

Up to now we have considered the series whose nth term is the sum of terms terminating

at a given level n. We now consider instead the expectation value of Eq. (57) as a series in

1/N . For N ≥ k, this series is again absolutely convergent to the desired expectation value.

It is easy to see that for arbitrary k, and for N ≫ k, the expectation value (57) is equal to

k! + O(1/N), as there are k! terms which terminate at level k. We now show that for N ≥ k,

the expectation value (57) is equal to k! exactly. Note that the expectation value in Eq. (57)

is equal to the trace of the map Tk (defined in (34))

Thus, the trace of the map Tk(M) is equal to the number of unit eigenvalues of Tk(M).

For N ≥ k the trace of this map can then be written as the sum of an infinite series in 1/N ,

and using the fact that the number of unit eigenvalues is equal to an integer for all integer N ,

we find that all terms in the series in 1/N , beyond the term of order N0, must vanish exactly

(the calculation above represents an explicit check of this for k = 2 and it may be readily

verified for any k). Thus, for all N ≥ k, the expectation value of Eq. (57) is equal to k!. This

gives an alternate proof that FN
k = k! when N ≥ k.

3.5 Counting and Main Result

In this section we prove a bound on the expectation value of the sum in Eq. (44), which will

give us a bound on the expectation value of the mth power of λ, proving the theorem. The

next three paragraph are devoted to outlining the basic idea of the proof, before beginning

the technical details.

The basic idea of the proof is to prove the bound on the sum by proving a bound on the

number of different choices of s1, ..., sm such that, when the resulting trace is evaluated using

the Schwinger-Dyson equations, there is a term which terminates at level n, for any given n.

We give this bound on the number of choices of s1, ..., sm in Eq. (61). We then combine this

bound with a bound on the contribution to the trace of terms which terminate at level n.

The idea is that there are a only small number of choices of s1, ..., sm which produce terms

which terminates at a small level n, and while there are a large number of choices of s1, ..., sm

which produce terms which terminate at high levels, such terms are small.

One technical caveat in this work is that for any choice of s1, ..., sm there will be certain

terms which terminate at a low level n. These are terms in which we use the Schwinger-Dyson

equations to contract U(si) in one trace with U(si)
† in a different trace. If for some i, we

contract all unitaries U(si) in this way, we have what is called a “complete rung cancellation”
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below. We consider such terms separately, and they are responsible for producing the leading

order expectation value of the trace in 1/N : these terms sum to give a contribution k! to the

expectation value of the trace, precisely corresponding to the expectation we expect from the

unit eigenvalues.

Ignoring those terms with complete rung cancellations, we see that a term in the Schwinger-

Dyson equations must involve contracting U(si) with U(sj) or U(sj)
† for some i 6= j. Such

terms involve constraints: such a term would require that either si = sj +D/2 or si = sj . In

order for such a term to terminate at a low level, there must be many such constraints, and

this is why there are only a few choices of s1, ..., sm which produce terms which terminate at

low levels. To show precisely that there are only a few such choices of s1, ..., sm, we follow a

different strategy. To explain this strategy, suppose you knew a choice of s1, ..., sm which gave

rise to a term which terminated at some level n and you were given the task of explaining to

someone which choice of s1, ..., sm you used. One way to do this would be to simply list the

m different values of s. This would require communicating log2(D
m) bits. We instead show

how to uniquely specify the choices of s1, ..., sm in a different way, by specifying most of the

choices of s1, .., .sm by describing which cancellations were used. For small n, this will allow

one to communicate the specific choice of s1, .., sm in much shorter way, thus implying that

that there are only a few choices of s1, ..., sm which produce the desired term terminating at

level n. We now put this idea into practice.

On a given iteration of the Schwinger-Dyson equations, we go from a product of c traces

to a product of c + 1, c − 1, or c − 2 traces. As in [19], we keep track of how the matrices

move under this iteration process using a function fn((l, i)) from pairs of integers to pairs

of integers. We say that the matrix U(sl,i) in the given product of traces, L1L2...Lc, is in

position (l, i). Let us consider the case of a term on the first line, where c increases by one.

Then, for any given j in the sum on the first line, we say that the matrix in position (1, i), for

i < j on the n+ 1st iteration corresponds to the matrix in position (1, i) on the nth iteration,

and so fn((1, i)) = (1, i), while the matrix in position (2, i) on the n+1st iteration corresponds

to the matrix in position (1, i+ j − 1) on the nth iteration, so fn((1, i+ j − 1)) = (2, i). The

matrix in position (l, i), for 2 < l ≤ k + 1 on the n+ 1st iteration corresponds to the matrix

(l − 1, i) on the nth iteration, so fn(l − 1, i) = (l, i). We follow a similar procedure for the

other lines of Eq. (48) and if there are cancellations, we keep track of how the matrix moves

under the cancellations.

We then keep track of which matrix after n iterations corresponds to a given matrix before

any iterations, by defining Fn((l, i)) = fn(fn−1(...f1((l, i)) for l = 1, 2, ..., 2k. Let us say that

the matrix at position (l, i) is “trivially moved” under the nth iteration of the Schwinger-

Dyson equations if if it is not in either position (1, 1) or position (1, j) using a term on the

first or second line, or in either position (1, 1) or position (l, j) using a term from the third or

fourth line. If a matrix is not trivially moved, and the matrix is not in position (1, 1), then

the Schwinger-Dyson equations imply a relation between sl,i and s1,1.

A given term in Eq. (48) arises from a given choice of (l, j): for a term on the first or

second line let us say l = 1. Let (1, 1) = Fn(l0, j0) and let (l, j) = Fn(l′0, j
′
0). If a matrix is

not trivially moved under on the nth iteration then there are two cases: (1) either l0 ≤ k and

l′0 ≤ k or l0 > k and l′0 > k. That is, either both matrices appeared in one of the first k traces,

which are traces of products of conjugates of unitaries, or both matrices appeared in one of
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the last k traces, which are traces of unitaries. Or, case (2): l0 ≤ k and l′0 > k or l0 > k and

l′0 ≤ k. That is, one matrix was in one of the first k traces and the other was in one of the

last k traces. We then break the first case into two sub-cases: (a), j0 = j′
0 or (b), j0 6= j′

0. We

also break the second case into two sub-cases: (a), j0 = m1 + 1 − j′
0 or (b), j0 6= m1 + 1 − j′

0.

In case 1a both matrices are unitary matrices U(s1,j0) or both are U(s1,j0)
† and in case 2a,

one matrix is U(s1,j0) and the other is U(s1,j0)
†. In case 1b, we know that s1,j0 = s1,j′

0
for

j0 6= j′
0 while in case 2b we know that s1,j0 = s1,j′

0
+D/2 for j0 6= j′

0. Thus, in case 1b or 2b

the term in the Schwinger-Dyson equation implies some constraint about the choice of s1,j .

To illustrate these different cases, consider the example (58): the first term on the right-hand

side of the top line is an example of case 2a, while the second term on the same line is an

example of case 1a.

Consider a given j; if on some iteration and for some l the matrix which was originally

in position (l, j) is not trivially moved and we have case 1b or 2b, then we can identify some

k such that either s1,j = s1,k or s1,j = s1,k +D/2. Let us write k = τ(j) in both cases, for

some function τ(j). We define a term to have a “complete rung cancellation of matrix j” if it

is not possible to identify such a k for the given j. We claim that the sum of all terms with a

complete rung cancellation of matrix i is equal to k! so long as k ≤ N . To show this, consider

the product of traces

tr(U(sm +D/2)...U(si+1 +D/2)X†U(si−1 +D/2)...U(s1 +D/2))k ×
×tr(U(s1)...U(si−i)XU(si+1)...U(sm)k, (59)

where X is some arbitrary unitary matrix. Averaging this trace over all unitary matrices U(s)

and over all unitary matrices X with the Haar measure, we find that the trace is equal to k!:

this can be established by applying Eq. (48) to this trace, and always cyclically permuting

the trace so that X is in the first position. This calculation is very similar to the example

calculation (57) above. However, applying the Schwinger-Dyson equations to the trace (59)

without first applying the cyclic permutation generates precisely the sum of terms mentioned

above, those in which there is a complete rung cancellation of matrix i. Thus, this sum

of terms equals k!. We further claim that for any given i1, i2, ..., id, the sum of all terms

with complete rung cancellations of matrices i1, i2, ...id is equal to k!, as may be shown by

considering a trace in which matrices U(si1), U(si2), ... are replaced by X1,X2, ..., and the

trace is averaged over the different X1,X2, .... Then, using the inclusion-exclusion principle,

the sum of terms in which for no i is there a complete rung cancellation of matrix i is equal to

the sum of all terms minus k!. So, we now focus on the sum of terms with no complete rung

cancellations, which we define to be E′
0,k(s1, ..., sm); if a given choice of s1, ..., sm gives rise to

a term which terminates at level n with no complete rung cancellations, then it is possible to

identify a τ(i) for each i.

We now follow the same approach as in [19] to bound the number of choices of s1, ..., sm0
1

which can produce a term which terminates at a level n with no complete rung cancellations.

Given the sequence of choices of terms on the right-hand side of the Schwinger-Dyson equation

(48), as well as knowledge of which cancellations occurred at each iteration, we know the

function τ(i), and given this function τ(i) there are now only at most [D/(D−1)](D−1)m0
1/2

possible values of s1,1, ..., s1,m0
1
. Thus, the total number of choices of s1, ..., sm0

1
which can

produce a term which terminates at level n is bounded by the number of possible choices
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of terms and cancellations in the Schwinger-Dyson equation (48) at each of the n iterations

multiplied by [D/(D − 1)](D − 1)m0
1/2. At each iteration of the Schwinger-Dyson equations,

we make a particular choice of l, j at each level, which requires specifying one particular

matrix out of all the matrices on the right-hand side; there are at most 2m1k− 1 matrices on

the right-hand side, so there are at most 2m1k − 1 choices (in [19], the slightly worse bound

(2m1k− 1)2 was found; we tighten the bound here). At each such iteration of the Schwinger-

Dyson equations, there may be cancellations in two different traces if the term came from

the second line of Eq. (48), with at most m1 cancellations in each trace, or cancellations in

two different places of a single trace, if the term came from the fourth line of Eq. (48), with

at most m1 cancellations in each place. Let us call the number of cancellations c1, c2 with

0 ≤ c1 ≤ m1 and 0 ≤ c2 ≤ m1. Then, by specifying l, j, c1, c2 for each iteration, we succeed

in fully specifying how the matrices move under the n iterations of the Schwinger-Dyson

equation; this requires specifying n numbers ranging from 1...2km1 − 1, and 2n numbers

ranging from 0...m1.

Thus, there are at most

[D/(D − 1)](D − 1)m0
1/2(2km0

1 − 1)n(m0
1 + 1)2n ≤ [D/(D − 1)](D − 1)m0

1/2(2km0
1)

3n (60)

choices of s1, ..., sm0
1

which can produce a term which terminates at level n. Using Eq. (50),

the number of choices of s1, ..., sm which can produce a term which terminates at level n is

at most
m∑

m0
1=0

(D − 1)m/22m(2km0
1)

3n ≤ (D − 1)m/22m (2km+ 1)3n+1

3n+ 1
. (61)

For any s1, ..., sm, we define nmin(s1, ..., sm) to be the smallest level at which a term

terminates with no complete rung cancellations. The sum of terms with m0
1 = 0, which is the

same as the sum of terms with nmin = 0, is bounded by

N2kD−m(D − 1)m/22m = N2λm
H . (62)

Thus, we re-write the sum in Eq. (44) as

E1,k ≤ k! +N2kN2λm
H

( 1

D

)m ∞∑

n=k

D∑

s1=1

D∑

s2=1

...

D∑

sm=1

δnmin(s1,...,sm),nE
′
0,k(s1, ..., sm). (63)

Therefore, for any s1, ..., sm with nmin > 0,

E′
0,k(s1, ..., sm) ≤

∑

n≥nmin(s1,...,sm)

N2(k−n)/3(2km− 1)n (64)

= N2k/3 [N−2/3(2km− 1)]nmin

1 −N−2/3(2km− 1)
.

From Eqs. (61,63,64),

E1,k ≤ k! + λm
H

{
N2 +N2k/3

∞∑

n=k

(2km+ 1)3n+1

3n+ 1

[N−2/3(2km− 1)]n

1 −N−2/3(2m− 1)

}
(65)

≤ 1 + λm
H

{
N2 +N2k/3

∞∑

n=k

2km+ 1

(3n+ 1)[1 −N−2/3(2km− 1)]
[N−2/3(2km+ 1)4]n

}
.
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We then pick m = (1/4k)N1/6, so that N−2/3(2km+ 1)4 ≤ 1/2 and

|λ| ≤ (E1,k − 1)1/m ≤ N2/mλH(1 + O(1))1/m (66)

= λH(1 + O(log(N)kN−1/6).

Using Markov’s inequality, the probability that |λ| is greater than c(1+O(k log(N)N−1/6)λH(D),

for any c ≥ 1, is bounded by c−(1/4k)N1/6

.

4 Discussion

We have introduced quantum and classical tensor product expanders. These provide a way to

approximate t-designs by acting many times with a small number of unitaries. An important

open question is whether efficient implementations of these tensor product expanders exist.
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Appendix A Proof of Lemma 1

First, we reduce to the case when the matrices are 2 × 2 with Π = |1〉〈1| and X is diagonal.

Express ‖pX + (1 − p)Y ‖ as the maximum of 〈ψ|pX + (1 − p)Y |ψ〉 over all unit vectors |ψ〉.
Write |ψ〉 as |ψ〉 = cos(θ)|ψ1〉 + sin(θ)|ψ2〉, where 0 ≤ θ ≤ π/2 and |ψ1〉, |ψ2〉 are normalized

vectors such that Π|ψ1〉 = |ψ1〉 and (I − Π)|ψ2〉 = |ψ2〉. Our conditions on X imply that

〈ψ|X|ψ〉 = cos2(θ) + 〈ψ2|X|ψ2〉 sin2(θ) and that |〈ψ2|X|ψ2〉| ≤ 1 − ǫX . Next, for i, j = 1, 2

define Yi,j = 〈ψi|Y |ψj〉. Since ‖Y ‖ ≤ 1, we also have that ‖∑2
i,j=1 Yi,j |i〉〈j|‖ ≤ 1. We can

now replace Y with
∑2

i,j=1 Yi,j |i〉〈j| and X with |1〉〈1| + 〈ψ2|X|ψ2〉 |2〉〈2|.
Now suppose that |〈ψ|X|ψ〉| ≥ 1 − ǫXǫY /12. Using our bound on |〈ψ2|X|ψ2〉|, we obtain

1 − ǫXǫY
12

≤ cos2(θ) + sin2(θ)(1 − ǫX) = 1 − sin2(θ)ǫX ,
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implying that sin2(θ) ≤ ǫY /12. We will show that this yields an upper bound on 〈ψ|Y |ψ〉.
Since ‖Y ‖ ≤ 1, we have

|Y1,2|, |Y2,1| ≤
√

1 − |Y 2
1,1|.

Thus

|〈ψ|Y |ψ〉| ≤ cos2(θ)|Y1,1| + sin(θ) cos(θ)(|Y1,2| + |Y2,1|) + sin2(θ)|Y2,2|

≤ cos(θ)|Y1,1| + sin(θ)2
√

1 − |Y1,1|2 +
ǫY
12
. (A.1)

If θ were not constrained then the first two terms of (A.1) would be maximized by taking θ to

be θ̂ = arctan(2
√

1 − |Y1,1|2/|Y1,1|) ≥ arctan(2
√

2ǫY − ǫ2Y /(1−ǫY )) ≥ arctan(2
√

2ǫY ). Using

sin2(arctan(z)) = z2/(1+z2), we have sin2(θ̂) ≥ 8ǫY /(1+8ǫY ) ≥ ǫY /2. Since θ is constrained

to lie in [0, arcsin(
√
ǫY /12)], it cannot equal θ̂. Thus maximizing (A.1) will require setting θ to

one of the endpoints of the allowed region. In particular, the maximum value of (A.1) occurs

when sin2(θ) = ǫY /12. A similar argument proves that setting |Y1,1| = 1 − ǫY maximizes

(A.1) as well. Now we calculate

|〈ψ|Y |ψ〉| ≤ (1 − ǫY ) + 2

√
ǫY
12

√
2ǫY − ǫ2Y +

ǫY
12

≤ 1 −
(

1 −
√

2

3
− 1

12

)
ǫY ≤ 1 − ǫY

10
(A.2)

We have shown that for any ψ, either 〈ψ|X|ψ〉 ≤ 1 − ǫXǫY /12 or 〈ψ|Y |ψ〉 ≤ 1 − ǫY /10. We

now use the triangle inequality to bound

〈ψ|pX + (1 − p)Y |ψ〉 ≤ max
(
p
(
1 − ǫXǫY

12

)
+ (1 − p), p+ (1 − p)

(
1 − ǫY

10

))

≤ 1 − ǫY
12

min(pǫX , 1 − p). (A.3)

Since this bound applies for all normalized |ψ〉, it must also upper-bound ‖pX + (1 − p)Y ‖.

Thus we obtain (30). The remaining steps of the Lemma are direct calculations.
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The Quantum Schur and Clebsch-Gordan Transforms:

I. Efficient Qudit Circuits

Dave Bacon∗, Isaac L. Chuang†and Aram W. Harrow‡

Abstract

We present an efficient family of quantum circuits
for a fundamental primitive in quantum information
theory, the Schur transform. The Schur transform on
n d-dimensional quantum systems is a transform be-
tween a standard computational basis to a labelling
related to the representation theory of the symmet-
ric and unitary groups. If we desire to implement
the Schur transform to an accuracy of ε, then our
circuit construction uses a number of gates which
is polynomial in n, d and log(ε−1). The key tool
in our construction is a poly(d, log n, log(ε−1)) algo-
rithm for the Ud Clebsch-Gordan transform. Our ef-
ficient circuit construction renders numerous proto-
cols in quantum information theory computationally
tractable and yields a new possible approach to quan-
tum algorithms which is distinct from the standard
paradigm of the quantum Fourier transform.

1 Introduction

The last decade has seen the development and ex-
pansion of a robust theory of quantum information[1]
However despite much progress in understanding op-
timal rates for manipulating and transmitting quan-
tum information, many results may not be of practi-
cal value, even if large-scale quantum computers and
quantum communication networks could be built.
This is because many of the optimal protocols assume
unbounded (or at least exponential) quantum compu-
tational resources for each local party. An analogous
situation arises classically, for example, in the the-
ory of classical error correcting codes, where it can
be difficult to reconcile the goals of efficient commu-
nication rates and computationally-efficient encoding
and decoding.

While the goal of performing classical coding
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†Dept. of Electrical Engineering and Computer Science

and Dept. of Physics, Massachusetts Institute of Technology,
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tasks in polynomial or even linear time has long been
studied, quantum information theory results have
typically ignored questions of efficiency. For example,
random quantum coding results (such as [2, 3, 4, 5])
require an exponential number of bits to describe, and
like classical random coding techniques, do not yield
efficient algorithms. There are a few important ex-
ceptions. Some quantum coding tasks, such as Schu-
macher compression[6, 7], are essentially equivalent
to classical circuits, and as such can be performed
efficiently on a quantum computer by carefully modi-
fying an efficient classical algorithm to run reversibly
and to deal properly with ancilla systems[8]. An-
other example, which illustrates some of the chal-
lenges involved, is Ref. [9]’s efficient implementation
of entanglement concentration[10]. Quantum key
distribution[11] not only runs efficiently, but can be
implemented with entirely, or almost entirely, single-
qubit operations and classical computation. Finally,
some randomized quantum code constructions have
been given efficient constructions using classical de-
randomization techniques in [12].

In this paper we present an efficient fam-
ily of quantum circuits for a transform used
ubiquitously[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
in quantum information protocols: the Schur trans-
form. Our efficient construction of the Schur trans-
form adds to the above list a powerful new tool for
finding algorithms that implement quantum commu-
nication tasks.

The Schur transform is a unitary transform on
n d-dimensional quantum systems (n qudits). The
basis change corresponding to the Schur transform
goes from a standard computational basis on the n
qudits to a labelling related to the representation
theory of the symmetric and unitary groups; much
like the Fourier transform, it thus transforms from
a local to a more global, collective basis, which cap-
tures symmetries of the system. In this article we
show how to efficiently implement the Schur trans-
form as a quantum circuit. The size of the circuit
we construct is polynomial in the number of qudits,
n, the dimension of the individual quantum systems,
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d, and the log of accuracy to which we implement
the transform, log(ε−1). Our efficient quantum cir-
cuit for the Schur transform makes possible efficient
quantum circuits for numerous quantum information
tasks: optimal spectrum estimation[13, 24], universal
entanglement concentration[14], universal compres-
sion with optimal overflow exponent[15, 16], encoding
into decoherence-free subsystems[18, 19, 20, 21], opti-
mal hypothesis testing[17], and quantum and classical
communication without shared reference frames[22].
The central role of the Schur transform in all of
these protocols (as well as others like the quantum
reverse Shannon theorem[25] where other aspects of
the protocol remain inefficient) is due to the fact that
the symmetries of independent and identically dis-
tributed quantum states are naturally treated by the
representation theory of the symmetric and unitary
groups.

The Schur transform is only defined up to a
choice of the Schur basis, and a key technical compo-
nent of our algorithm will be the selection of certain
subgroup-adapted bases for the Schur basis. In par-
ticular we use the Gel’fand-Zetlin basis[26] and the
Young-Yamanouchi basis (sometimes called Young’s
orthogonal basis)[27]. The usefulness of subgroup-
adapted bases to quantum algorithms was recognized
by Beals[28] and Moore and Russell[29] in their algo-
rithms for efficient Fourier transforms on nonabelian
finite groups. We will similarly exploit the recur-
sive structure of subgroup-adapted bases to build ef-
ficient recursive algorithms for the Clebsch-Gordan
and Schur transforms. However, we emphasize that
the Schur transform is not equivalent to the Fourier
transform over Sn, Ud or any other group, while
connections between such transforms and the Schur
transform exist, and will be discussed in part II of
this paper (see also Chapter 8 of [30]).

By choosing the Gel’fand-Zetlin basis and the
Young-Yamanouchi basis, we are able to show that
the Schur transform can be constructed from a cas-
cade of Clebsch-Gordan transforms (in rough anal-
ogy to the iterative constructions of [29]). To im-
plement the Clebsch-Gordan transform, we use the
Wigner-Eckart theorem and the Gel’fand-Zetlin ba-
sis to derive a recursive expression for the d dimen-
sional Clebsch-Gordan transform in terms of the d−1
dimensional Clebsch-Gordan transform and small, ef-
ficiently implementable, unitary transforms. (The ef-
ficiency of this reduction is reminiscent of the use
of adapted diameter in [29], but not directly related
since Ud/Ud−1 is not finite.) The resulting recursive
circuit for the Clebsch-Gordan transform can achieve
accuracy ε using poly(d, log n, log 1/ε) gates in con-

trast with the nO(d2) gates that would be required by
a naive construction. The total size of our circuit for
the Schur transform is thus n · poly(d, log n, log 1/ε).

The remainder of the paper is as follows. In Sec-
tion 2 we define the Schur transform along with the
necessary basic concepts from representation theory.
In Section 3 we introduce the basis labelling scheme
used in the Schur transformation using the concept of
a subgroup-adapted basis. Once we have a concrete
Schur basis defined, we describe the Clebsch-Gordan
transform and explain how to use it to give an effi-
cient circuit for the Schur transform in Sec. 4. De-
tails on efficiently implementing the Clebsch-Gordan
transform are in an appendix.

2 Representation theory and the Schur
transform

Schur duality relates to the representation theory of
the symmetric group on n elements, Sn, and the
group of d×d unitary matrices, Ud. In this section we
will state facts about these representations without
proof; for more details the reader should consult [31]
or the longer version of this paper ([30] and future
work).

2.1 Representation theory: A representation
(r, V ) of a group G is a complex vector space V to-
gether with a homomorphism from G to End(V ), i.e.
a function r : G → End(V ) such that r(g1)r(g2) =
r(g1g2). We say a representation (r, V ) is irreducible
(an irrep) if the only r-invariant subspaces of V are
the empty subspace {0} and the entire space V . In
order to apply our results to quantum computing, we
consider only the case when V is complex and finite
dimensional and r(g) is unitary for all g ∈ G. This
way a unit vector in V can represent the state of a
quantum system and group elements g ∈ G corre-
spond to unitary rotations r(g), which could in prin-
ciple be performed by a quantum computer.

We now turn to the representations relevant to
the Schur transform. Consider a system of n d-
dimensional quantum systems: n qudits. Fix a
standard basis |i〉, i = 1 . . . d for the state space of
each qudit: Cd. A basis for (Cd)⊗n (which we call the
computational basis) is then |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 =
|i1, i2, . . . , in〉 where ik = 1 . . . d. In terms of this
basis, we can define the action of Sn as

P(s)|i1, i2, . . . , in〉 = |is−1(1), is−1(2), . . . , is−1(n)〉
for s ∈ Sn. The unitary group Ud, on the other hand,
acts on (Cd)⊗n according to the n-fold product action
as

Q(U)|i1, i2, · · · , in〉 = U |i1〉 ⊗ U |i2〉 ⊗ · · · ⊗ U |in〉
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for any U ∈ Ud.
Note that P and Q commute, which means they

can be simultaneously decomposed into irreps. Schur
duality (or Schur-Weyl duality)[31, 32] goes farther
and describes the exact nature of this decomposition,
but in order to state it, we will first need to specify
the irreps of Sn and Ud.

Let Id,n = {λ = (λ1, λ2, . . . , λd)|λ1 ≥ λ2 ≥
· · · ≥ λd ≥ 0 and

∑d
i=1 λi = n} denote partitions

of n into ≤ d parts. We consider two partitions
(λ1, . . . , λd) and (λ1, . . . , λd, 0, . . . , 0) equivalent if
they differ only by trailing zeroes; according to this
principle, In := In,n contains all the partitions of
n. Partitions label irreps of Sn and Ud as follows:
if we let d vary, then Id,n labels irreps of Sn (or
sometimes we use In := In,n), and if we let n vary,
then Id,n labels polynomial irreps of Ud (or sometimes
we use Zd++ := ∪nId,n). Call these irreps (pλ,Pλ)
and (qdλ,Qdλ) respectively, for λ ∈ Id,n. We need the
superscript d because the same partition λ can label
different irreps for different Ud; on the other hand the
Sn-irrep Pλ is uniquely labeled by λ since n =

∑
i λi.

For the case of n qudits, Schur duality states that
there exists a basis (which we label |λ〉|qλ〉|pλ〉Sch and
call the Schur basis) which simultaneously decom-
poses the action of P(s) and Q(U) into irreps:

Q(U)|λ〉|qλ〉|pλ〉Sch = |λ〉(qdλ(U)|qλ〉)|pλ〉Sch

P(s)|λ〉|qλ〉|pλ〉Sch = |λ〉|qλ〉(pλ(s)|pλ〉)Sch

and that the common representation space (Cd)⊗n
decomposes as

(2.1) (Cd)⊗n
Ud×Sn∼=

⊕

λ∈Id,n
Qdλ ⊗ Pλ.

The Schur basis can be expressed as superposi-
tions over the standard computational basis states
|i1, i2, . . . , in〉 as
(2.2)

|λ, qλ, pλ〉Sch =
∑

i1,i2,...,in

[
U†Sch

]λ,qλ,pλ
i1,i2,...,in

|i1i2 . . . in〉,

where USch is the unitary transformation implement-
ing the isomorphism in (2.1). Thus, for any U ∈ Ud
and any s ∈ Sn,
(2.3)

U†SchQ(U)P(s)USch =
∑

λ∈Id,n
|λ〉〈λ| ⊗ qdλ(U)⊗ pλ(s).

If we now think of USch as a quantum circuit, it
will map the Schur basis state |λ, qλ, pλ〉Sch to the
computational basis state |λ, qλ, pλ〉 with λ, qλ, and
pλ expressed as bit strings. The dimensions of the

irreps pλ and qdλ vary with λ, so we will need to
pad the |qλ, pλ〉 registers when they are expressed
as bit strings. We will label the padded basis as
|λ〉|q〉|p〉, explicitly dropping the λ dependence. Later
in the paper we will show how to do this padding
efficiently with only a logarithmic additive spatial
overhead. We will refer to the transform from the
computational basis |i1, i2, . . . , in〉 to the basis of
three strings |λ〉|q〉|p〉 as the Schur transform. The
Schur transform is shown schematically in Fig. 1.
Notice that just as the standard computational basis
|i〉 is arbitrary up to a unitary transform, the bases
for Qdλ and Pλ are also both arbitrary up to a unitary
transform, though we will later choose particular
bases for Qdλ and Pλ.

|i1〉

USch

|i2〉 |λ〉

|i3〉

...
|q〉

|in〉 |p〉

|0〉

Figure 1: The Schur transform. Notice how the direct
sum over λ in (2.1) becomes a tensor product between
the |λ〉 register and the |q〉 and |p〉 registers. Since
the number of qubits needed for |q〉 and |p〉 vary with
λ, we need slightly more spatial resources, which are
here denoted by the ancilla input |0〉.

2.2 Applications of the Schur Transform The
Schur transform is useful in a surprisingly large
number of quantum information protocols. Here we,
review these applications, with particular attention
to the use of the Schur transform circuit in each
protocol. We emphasize again that our construction
of the Schur transform simultaneously makes all of
these tasks computationally efficient.

2.2.1 Spectrum and state estimation Suppose
we are given many copies of an unknown mixed quan-
tum state, ρ⊗n and wish to estimate the spectrum of
ρ. An asymptotically optimal estimate (in the sense
of the error exponent of large deviations) for the spec-
trum of ρ can be obtained by applying the Schur
transform, measuring λ and taking the spectrum es-
timate to be (λ1/n, . . . , λd/n)[13, 24]. Thus an ef-
ficient implementation of the Schur transform will
efficiently implement the spectrum estimating pro-
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tocol (note that it is efficient in d, not in log(d)).
Estimating ρ reduces to measuring |λ〉 and |q〉, al-
though an optimal estimator is known only for the
case of d = 2[33]. Further, optimal quantum hypoth-
esis testing can be obtained by a similar, but more
complicated, protocol[17, 34]. The only one of these
known to have an implementation not based on the
Schur transform is spectrum estimation, which can
be performed using the Fourier transform on Sn with
a technique known as “generalized phase estimation”
or as “the phase kickback trick”[35].

2.2.2 Universal distortion-free entanglement
concentration Let |ψ〉AB be a bipartite partially
entangled state shared between two parties, A and B.
Suppose we are given many copies of |ψ〉AB and we
want to transform these states into copies of a maxi-
mally entangled state using only local operations and
classical communication. Further, suppose that we
wish this protocol to be universal, meaning it works
when neither A nor B know the state |ψ〉AB , un-
like the original entanglement concentration protocol
in [10]. Universal distortion-free (meaning zero er-
ror, but the entanglement yield is a random variable)
entanglement concentration can be performed[14] by
both parties performing Schur transforms on their n
halves of |ψ〉AB , measuring their |λ〉, discarding |q〉
and retaining |p〉. The two parties will now share a
maximally entangled state of varying dimension de-
pending on which λ was measured. This dimension is
2n(H±o(1)) with probability 1 − o(1), where H is the
entropy of one of the parties’ reduced mixed states,
and in fact this protocol is optimal even in a non-
asymptotic sense (i.e. for each finite value of n)[23].
While universal entanglement concentration can also
be efficiently achieved without the Schur transform
by using some of the copies to perform tomography,
this introduces Ω(n−1/2) errors.

2.2.3 Universal Compression with Optimal
Overflow Exponent Measuring |λ〉 weakly so as to
cause little disturbance, together with appropriate re-
labeling, comprises a universal compression algorithm
with optimal overflow exponent (rate of decrease of
the probability that the algorithm will output a state
that is much too large)[15, 16]. In the fixed-rate set-
ting (where the entropy of the source is promised to
be less than the rate), performing a projective mea-
surement on λ will compress while incurring the op-
timal exp(−Ω(n)) error rate[36]. The only known ef-
ficient procedures not relying on the Schur transform
have worse overflow exponents[37, 38] and introduce
Ω(n−1/4) errors even in the fixed-rate setting.

2.2.4 Encoding and decoding into
decoherence-free subsystems Further appli-
cations of the Schur transform include encoding
into decoherence-free subsystems[18, 19, 20, 21].
Decoherence-free subsystems are subspaces of a
system’s Hilbert space which are immune to decoher-
ence due to a symmetry of the system-environment
interaction. For the case where the environment
couples identically to all systems, information can
be protected from decoherence by encoding into the
|pλ〉 basis. We can use the inverse Schur transform
(which, as a circuit can be implemented by reversing
the order of all gate elements and replacing them
with their inverses) to perform this encoding: simply
feed in the appropriate |λ〉 with the state to be
encoded into the |p〉 register and any state into
the |q〉 register into the inverse Schur transform.
Decoding can similarly be performed using the Schur
transform. Previously no efficient algorithms for
encoding or decoding were known.

2.2.5 Communication without a shared ref-
erence frame An application of the concepts of
decoherence-free subsystems comes about when two
parties wish to communicate (in either a classical or
quantum manner) when the parties do not share a
reference frame. The effect of not sharing a reference
frame is the same as the effect of collective decoher-
ence (the same random unitary rotation has been ap-
plied to each subsystem). Thus encoding information
into the |p〉 register will allow n−O(log n) qudits to
be sent noiselessly with n uses of the channel in spite
of the fact that the two parties do not share a refer-
ence frame[22]. Just as with decoherence-free subsys-
tems, this encoding and decoding can be done with
the Schur transform. Previously, the best known effi-
cient procedure used m out of the n channel uses for
tomography, resulting in Ω(1/m) overall error.

3 Subgroup adapted bases and the Schur
basis

In the last section, we defined the Schur transform
in a way that left the basis almost completely arbi-
trary. To construct a quantum circuit for the Schur
transform, we need to explicitly specify the Schur ba-
sis. Since we want the Schur basis to be of the form
|λ, q, p〉, this reduces to specifying orthonormal bases
for Qdλ and Pλ, which we will call Qdλ and Pλ, respec-
tively. We will choose Qdλ and Pλ to both be a type
of basis known as a subgroup-adapted basis, an idea
first introduced to quantum information in [28, 29].

The key idea is to examine how an irrep (r, V ) of
a group G decomposes into H-irreps when restricted
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to H (denoted (r|H, V↓H)). This behavior is called
branching and when no irrep of H ever appears more
than once in an irrep of G, we call the branching
multiplicity-free. Now consider a tower of groups
G = G1 ⊃ G2 ⊃ · · · ⊃ Gk−1 ⊃ Gk = {e} where
{e} is the trivial subgroup consisting of only the
identity element. We call this a canonical tower when
the branching for each Gi+1 ⊂ Gi is multiplicity-
free. Finally we can define a subgroup-adapted basis
(unique up to an arbitrary choice of phase) in which
basis vectors have the form |αk, . . . , α2〉, where each
αi ∈ Ĝi and αi+1 appears in the decomposition of
Vαi↓Gi+1

.
We now need only to specify canonical towers

of subgroups for Ud and Sn, which will give rise
to subgroup-adapted bases for the irreps Qdλ and
Pλ, known as the Gel’fand-Zetlin basis[26] and the
Young-Yamanouchi basis (or sometimes Young’s or-
thogonal basis[27]), respectively.

The Gel’fand-Zetlin basis for Qdλ— For Ud, it
turns out that the chain of subgroups {1} = U0 ⊂
U1 ⊂ . . . ⊂ Ud−1 ⊂ Ud is a canonical tower, where
we have Ud − 1 embedded in Ud by Ud−1 := {u ∈
Ud : u|d〉 = |d〉}. Since the branching from Ud
to Ud−1 is multiplicity-free, we obtain a subgroup-
adapted basis Qdλ, which is known as the Gel’fand-
Zetlin (GZ) basis. Our only free choice in a GZ basis
is the initial choice of basis |1〉, . . . , |d〉 for Cd which
determines the canonical tower of subgroups U1 ⊂
. . . ⊂ Ud. Once we have chosen this basis, specifying
Qdλ reduces to knowing which irreps Qd−1

µ appear in

the decomposition of Qdλ↓Ud−1
. Recall that the irreps

of Ud are labeled by elements of Id,n with n arbitrary.
This set can be denoted by Zd++ := ∪nId,n = {λ ∈
Zd : λ1 ≥ . . . ≥ λd ≥ 0}. For µ ∈ Zd−1

++ , λ ∈ Zd++,
we say that µ interlaces λ and write µ-λ whenever
λ1 ≥ µ1 ≥ λ2 . . . ≥ λd−1 ≥ µd−1 ≥ λd. In terms of
Young diagrams, this means that µ is a valid partition
(i.e. a nonnegative, nonincreasing sequence) obtained
from removing zero or one boxes from each column
of λ. Thus a basis vector in Qdλ corresponds to a
sequence of partitions q = (qd = λ, . . . , q1) such that
q1-q2- . . .-qd and qj ∈ Zj++ for j = 1, . . . , d.

In order to work with the Gel’fand-Zetlin basis
vectors on a quantum computer, we will need an ef-
ficient method to write them down. If d is small
compared to n (as in many information theory ap-
plications), we can write an element of Id,n with
dd log(n + 1)e bits, since it consists of d integers be-
tween 0 and n. A Gel’fand-Zetlin basis vector then
requires no more than dd2 log(n+1)e bits, since it can
be expressed as d partitions of integers no greater
than n into ≤ d parts. Unless otherwise specified,

our algorithms will use this encoding of the GZ basis
vectors. However, another encoding, known as semi-
standard Young tableaux, can represent a GZ basis
vector using ndlog de bits. To encode q = (qd, . . . , q1),
we fill the Young diagram of λ with n integers from
{1, . . . , d} in a pattern that is nonincreasing from left
to right, strictly increasing from top to bottom, and
such that for each d′ < d, removing all boxes with
integers larger than d′ leaves the Young diagram of
qd′ .

The Young-Yamanouchi basis for Pλ— The situ-
ation for Sn is quite similar. Our chain of subgroups
is {e} = S1 ⊂ S2 ⊂ . . . ⊂ Sn, where for m < n we
define Sm ⊂ Sn to be the permutations in Sn which
leave the last n−m elements fixed. Recall that the ir-
reps of Sn can be labeled by In = In,n: the partitions
of n into ≤ n parts.

Again, the branching from Sn to Sn−1 is
multiplicity-free, so to determine an orthonormal ba-
sis Pλ for the space Pλ we need only know which ir-
reps occur in the decomposition of Pλ↓Sn−1

. It turns
out that the branching rule is given by finding all
ways to remove one box from λ while leaving a valid
partition. Denote the set of such partitions λ − �.
Formally, λ − � := In ∩ {λ − ej : j = 1, . . . , n},
where ej is the unit vector in Zn with a one in the
jth position and zeroes elsewhere. Thus, the general
branching rule is

(3.4) Pλ↓Sn−1

Sn−1∼=
⊕

λ′∈λ−�
Pλ′ .

This chain can be concisely labelled in dlog n!e
bits by writing the number j in the box of the
Young frame that is removed when restricting from
Sj to Sj−1. However, for applications such as
data compression[15, 16] we will need an encoding
which gives us closer to the optimal dlogPλe bits.
First we note an exact (and efficiently computable)
expression[31, 27] for |Pλ| = dimPλ:

(3.5) dimPλ =

∏
1≤i<j≤d(λi − λj + j − i)

λ1 + d− 1!λ2 + d− 2! · · ·λd!
n! .

Now we would like to efficiently and reversibly map
an element of Pλ (thought of as a chain of partitions
p = (pn = λ, . . . , p1 = (1)) ∈ Pλ, with pj ∈ pj+1−�)
to an integer in [|Pλ|] := {1, . . . , |Pλ|}. We will
construct this bijection fn : Pλ → [|Pλ|] by defining
an ordering on Pλ and setting fn(p) := |{p′ ∈
Pλ : p′ ≤ p}|. First fix an arbitrary, but easily
computable, (total) ordering on partitions in In for
each n; for example, lexicographical order. This
induces an ordering on Pλ if we rank a basis vector
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p ∈ Pλ first according to pn−1, using the order on
partitions we have chosen, then according to pn−2

and so on. We skip pn, since it is always equal to λ.
In other words, for p, p′ ∈ Pλ, p > p′ if pn−1 > p′n−1

or pn−1 = p′n−1 and pn−2 > p′n−2 or pn−1 = p′n−1,
pn−2 = p′n−2 and pn−3 > p′n−3, and so on. Thus
fn : Pλ → [|Pλ|] can be easily verified to be
(3.6)

fn(p) = fn(p1, . . . , pn) := 1 +
n∑

k=2

∑

λ∈pk−�
λ<pk−1

dimPλ.

Thus fn is an injective map from Pλ to [|Pλ|] that is
computable in time polynomial in n. Unfortunately,
similar techniques for Qdλ take time Ω(nd).

4 The Clebsch-Gordan transform and
efficient circuits for the Schur transform

In this section, we describe an efficient circuit for the
Schur transform USch. The key building block will
be the Ud Clebsch-Gordan (CG) transform, which de-
composes a Kronecker product of Ud-irreps Qdµ ⊗Qdν
into a direct sum of other Ud-irreps (described in
Sec. 4.1). Then we will give efficient recursive con-
structions for the Schur transform and the CG trans-
form. In Sec. 4.2, we will show how the Schur trans-
form on (Cd)⊗n reduces to a Schur transform on
(Cd)⊗n−1 and a CG transform. Then in Sec. 4.3, we
will show how the Ud CG transform reduces to a Ud−1

CG transform and a efficiently-calculable d × d uni-
tary matrix known as a reduced Wigner transform.
Together this will yield poly-time algorithms for the
CG and Schur transforms.

4.1 The Clebsch-Gordan Series and Trans-
form The Clebsch-Gordan decomposition describes
the reduction of a tensor product representation into
irreps. We specialize to the case when the group is Ud,
one of the irreps is Qdµ and the other is Qd(1) = Cd, the
d-dimensional defining irrep of Ud. The representa-
tion Qdλ⊗Qd(1) is generally reducible and decomposes
as

(4.7) Qdλ ⊗Qd(1)

Ud∼=
⊕

λ′∈λ+�
Qdλ′ ,

Here λ + � = {λ + ej : j ∈ [d]} ∩ Zd++ is the “add
a single box” prescription for tensoring in a defining
representation of Ud: we add a single box to a Young
diagram and if the new Young diagram is a valid
Young diagram (i.e. corresponds to a valid partition),
then this irrep appears in the Clebsch-Gordan series.
By Schur duality, this statement is equivalent to the

“remove a box” Sn ⊃ Sn−1 branching rule stated in
Sec. 3.

We now seek to define the CG transform as a
quantum circuit. One of the input irreps will always
be the defining irrep, but we allow the other irrep to

be specified by a quantum input. If we define U
λ,(1)
CG

to be the transform relating the two sides of (4.7),
then the CG transform we are interested in is

(4.8) UCG =
∑

λ∈Zd++

|λ〉〈λ| ⊗U
λ,(1)
CG .

This takes as input a state of the form |λ〉|q〉|i〉, for
λ ∈ Zd++, |q〉 ∈ Qdλ and i ∈ [d]. The output is
a superposition over vectors |λ〉|λ′〉|q′〉, where λ′ ∈
λ+ � and |q′〉 ∈ Qdλ′ . Equivalently, we could output
|λ〉|j〉|q′〉 or |j〉|λ′〉|q′〉 (where λ′ = λ+ej) since (λ, λ′),
(λ, j) and (λ′, j) are all trivially related via reversible
classical circuits.

|λ〉

UCG

|λ〉

|q〉 |λ′〉

|i〉 |q〉

Figure 2: Schematic of the Clebsch-Gordan trans-
form. Equivalently, we could replace either the λ
output or the λ′ output with j such that λ′ = λ+ ej .

4.2 Constructing the Schur Transform from
Clebsch-Gordan Transforms We now describe
how to construct the Schur transform out of a series
of Clebsch-Gordan transforms. Begin by decompos-
ing (Cd)⊗n in two different ways. First, we Schur-
decompose the first n− 1 qudits,

(4.9) (Cd)⊗n−1⊗Cd
Ud×Sn−1∼=

⊕

λ∈Id,n−1

Qdλ⊗Pλ⊗Cd

Next, combine Qdλ and Cd using the CG transform
(4.7), then rearrange terms to obtain
(4.10)

(Cd)⊗n ∼=
⊕

λ∈Id,n−1

λ′∈λ+�

Qdλ′⊗Pλ =
⊕

λ′∈Id,n
Qdλ′⊗


 ⊕

λ∈λ′−�
Pλ


 .

On the other hand, we have (Cd)⊗n ∼=
⊕

λ′∈Id,n Qdλ′⊗
Pλ′ from (2.1). These two decompositions can be
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equated using (3.4), the branching rule for Sn−1 ⊂
Sn.

Now we will turn the representation-theoretic
arguments of the last paragraph into an algorithm.
The Schur transform on (Cd)⊗n starts with inputs of
the form |i1, . . . , in〉 ∈ (Cd)⊗n and is implemented as
follows:

1. Perform the Schur transform on the first n −
1 registers (corresponding to (4.9)) to obtain∣∣λ(n−1)

〉∣∣q(n−1)
〉∣∣p(n−1)

〉
|in〉.

2. Perform the CG transform (as in
(4.10)) on

∣∣λ(n−1)
〉∣∣q(n−1)

〉
|in〉 to obtain∣∣λ(n−1)

〉∣∣λ(n)
〉∣∣q(n)

〉
.

3. Set |λ〉 =
∣∣λ(n)

〉
and |q〉 =

∣∣q(n)
〉
. Concatenate

λn−1 and p(n−1) to form the Young-Yamanouchi
basis element |p〉 =

∣∣λ(n−1)
〉∣∣p(n−1)

〉
∈ Pλ.

The base case of this recursion is simply the trivial
n = 1 relabelling corresponding to Qd(1)

∼= Cd and
P(1)

∼= C.
We can also express this algorithm for the Schur

transform without the need for recursion. On in-
put |i1, . . . , in〉 ∈ (Cd)⊗n, we combine each of
|i1〉, . . . , |in〉 using the CG transform, one at a time.
We start by inputting

∣∣λ(1)
〉

= |(1)〉, |i1〉 and |i2〉
into UCG which outputs

∣∣λ(1)
〉

and a superposition

of different values of
∣∣λ(2)

〉
and |q2〉. Here λ(2) can

be either (2, 0) or (1, 1) and |q2〉 ∈ Qd
λ(2) . Contin-

uing, we apply UCG to
∣∣λ(2)

〉
|q2〉|i3〉, and output a

superposition of vectors of the form
∣∣λ(2)

〉∣∣λ(3)
〉
|q3〉,

with λ(3) ∈ Id,3 and |q3〉 ∈ Qd
λ(3) . Each time we

are combining an arbitrary irrep λ(k) and an associ-
ated basis vector |qk〉 ∈ Qdλ(k) , together with a vector
from the defining irrep |ik+1〉. This is repeated for
k = 1, . . . , n− 1 and the resulting circuit is depicted
in Fig. 3.

We are left with a superposition of states of
the form

∣∣λ(1), . . . , λ(n)
〉
|qn〉, where |qn〉 ∈ Qd

λ(n) ,

λ(k) ∈ Id,k and each λ(k) is obtained by adding a
single box to λ(k−1); i.e. λ(k) = λ(k−1) + ejk for
some jk ∈ [d]. Again we relabel λ = λ(n), |q〉 = |qn〉
and |p〉 =

∣∣λ(1), . . . , λ(n−1)
〉
, where we use the fact

that our basis for Pλ is adapted to the subgroup
tower S1 ⊂ . . . ⊂ Sn. Thus, we obtain the desired
|λ〉|q〉|p〉. Finally, we can optionally compress the
|p〉 register to dlog |Pλ|e qubits using the techniques
in Sec. 3, as is required for applications such as
data compression and entanglement concentration,
described in Sec. 2.2.

In the next section we will show that a single
Ud transform can be performed to accuracy ε in

UCGj(1)iji1iji2i UCGji3i UCGji4i
UCGjini

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b jqnij�(n)ij�(n�1)i
j�(1)ij�(2)ij�(3)ij�(n�2)i
.

Figure 3: Cascading Clebsch-Gordan transforms to
produce the Schur transform. Not shown are any
ancilla inputs to the Clebsch-Gordan transforms.
The structure of inputs and outputs of the Clebsch-
Gordan transforms are the same as in Fig. 2.

time poly(log n, d, log 1/ε). Thus the entire Schur
transform requires time n · poly(log n, d, log 1/ε) plus
an optional poly(n) to compress the |p〉 register.

Remark: If d � n, then a slight modifi-
cation of the above algorithm can run in time
poly(n, log d, log 1/ε). First note that given oracle ac-
cess to u ∈ Sd ⊂ Ud, we need only time O(n log d) to
apply Q(u) or qdλ(u), assuming our GZ basis is writ-
ten as semistandard Young tableaux. The algorithm
first calculates a sorted list a1, . . . , am of the m≤ n
distinct symbols occuring in i1, . . . , in. Next we will
map |aj〉 to |j〉 for each occurence of aj in the in-
put string. Now we can apply the Schur transform to
(Cm)⊗n, which runs in time poly(n, log 1/ε). Finally
we apply the inverse map |j〉 → |aj〉 to |q〉, and use
|q〉 to uncompute a1, . . . , am.

4.3 Efficient circuits for the Clebsch-Gordan
transform We now describe how to construct the
Ud CG transform described in (4.7) and (4.8). The
key to an efficient algorithm will be to reduce the
Ud CG transform to a Ud−1 transform. As with the
Schur transform, our strategy will be to decompose a
representation in two different ways, and then to find
an operational method of equating them. This time
we will decompose the Ud-representation Qdλ ⊗ Cd,
which is input to the CG transform, both by using
the Ud−1 ⊂ Ud branching rules and by applying the
CG transform.

First, we might apply the Ud CG transform and
then Ud−1 ⊂ Ud branching to obtain

(4.11)
⊕

λ′∈λ+�
Qdλ′

Ud−1∼=
⊕

λ′∈λ+�
µ′-λ′

Qd−1
µ′ .
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Here we can write λ′ = λ + ej for j ∈ [d], and can
map between |λ, λ′〉 and |λ, j〉.

On the other hand, if we restrict to Ud−1 first and
then apply the Ud−1 CG, we obtain

Qdλ ⊗ Cd
Ud−1∼=

⊕

µ-λ
Qd−1
µ ⊗

(
C⊕ Cd−1

)
(4.12a)

Ud−1∼=
⊕

µ-λ
Qd−1
µ ⊕Qd−1

µ ⊗ Cd−1(4.12b)

Ud−1∼=
⊕

µ-λ


Qd−1

µ ⊕
⊕

µ′∈µ+�
Qd−1
µ′


(4.12c)

Ud−1∼=
⊕

µ-λ
µ′∈{µ}∪µ+�

Qd−1
µ′ .(4.12d)

In this last step, we can write µ′ = µ + ej′ , where
j′ ∈ {0, 1, . . . , d − 1} and we have defined e0 = 0;
moreover, we can readily map |µ, µ′〉 to and from
|µ′, j′〉.

We want to perform U
λ,(1)
CG , which is a Ud-

invariant operator that maps the LHS of (4.12a) to
the LHS of (4.11). Since all the maps in (4.12)

and (4.11) are Ud−1-invariant, if we pass U
λ,(1)
CG

through each of these isomorphisms we obtain a Ud−1-
invariant map from (4.12d) to the RHS of (4.11),
which we call T̂λ. Next, the fact that T̂λ commutes
with the action of Ud−1 means that T̂λ must act as
the identity on each subsystem Qd−1

µ′ and nontrivially

only on the multiplicity spaces of Qd−1
µ′ , conditioned

on µ′. These multiplicity spaces are d-dimensional
in both (4.12d) and (4.11); in the former they are
labeled by j′ ∈ {0, . . . , d− 1} such that µ′ = µ+ ej′ ,
while in the latter they are labeled by j ∈ [d] such
that λ′ = λ+ ej .

Let T̂λ,µ
′

denote the restriction of T̂λ to the
multiplicity space of Qd−1

µ′ . With a slight abuse of
notation, we can write

(4.13) T̂λ =
∑

µ

|µ〉〈µ| ⊗ IQd−1

µ′
⊗ T̂λ,µ′ .

We call T̂λ,µ
′

a reduced Wigner operator. Its matrix
elements, given by

(4.14) T̂λ,µ
′

=
d∑

j=1

d−1∑

j′=0

T̂λ,µ
′

j,j′ |j〉〈j′|,

are called reduced Wigner coefficients. At the end of

this section, we will show how the T̂λ,µ
′

j,j′ can efficiently

calculated, and thus T̂λ,µ
′

and T̂λ can be efficiently
implemented.

First we show how performing T̂λ,µ
′

will allow

us to implement U
λ,(1)
CG . Since we constructed T̂λ

by composing U
λ,(1)
CG with the isomorphisms in (4.12)

and (4.11), our algorithm for U
λ,(1)
CG will simply

be to apply the isomorphisms in (4.12), apply T̂λ

(or equivalently, T̂λ,µ
′

conditioned on µ′), and then
reverse the isomorphism in (4.11). A more detailed
description of the CG algorithm is as follows:

1. Start with input |λ〉|q〉|i〉 with λ ∈ Id,n, |q〉 ∈ Qdλ
and i ∈ [d].

2. Unpack |q〉 into |µ〉|qd−1〉, with µ-λ and |qd−1〉 ∈
Qd−1
µ . This can be done efficiently because |q〉 is

expressed in the GZ basis.

3. If i ∈ {1, . . . , d − 1} then perform the Ud−1

CG transform on |µ〉|qd−1〉|i〉 to obtain output
|µ′〉
∣∣q′d−1

〉
|j′〉 with

∣∣q′d−1

〉
∈ Qd−1

µ′ and µ′ =
µ + ej′ . Otherwise if i = d then simply set
|µ′〉 = |µ〉,

∣∣q′d−1

〉
= |qd−1〉 and replace |i〉 = |0〉

with |j′〉 = |0〉. The “if/then/else” statement
corresponds to (4.12a), while the conditional
Ud−1 CG transform is the isomorphism applied
in (4.12c)

4. Perform the reduced Wigner transform T̂λ, by
applying T̂λ,µ

′
conditional on µ′ to map |j′〉 to

|j〉, as per (4.13) and (4.14).

5. Map |λ〉|j〉 7→ |λ′〉|j〉 with λ′ = λ+ ej .

6. Pack |µ′〉 and
∣∣q′d−1

〉
together into a GZ basis

vector |q′〉 ∈ Qdλ′ , as in (4.11).

7. Output |λ′〉|q′〉|j〉.
Finally we describe how to efficiently implement

T̂λ,µ
′
, starting with an efficiently-calculable formula

for T̂λ,µ
′

j,j′ from Ref. [46]. First introduce the vectors

λ̃ := λ+
∑d
i=1(d−i)ei and µ̃ := µ+

∑d−1
i′=1(d−1−i′)ei′

(where we recall that µ = µ′− ej′). Also define Sj−j′
to be 1 if j ≥ j′ and −1 if j < j′. Then according to
Eq. (38) in Ref [46],

T̂λ,µ
′

j,j′ =Sj−j′




∏
s∈[d−1]\j

(λ̃j − µ̃s)
∏

t∈[d]\j′
(µ̃j′ − λ̃t + 1)

∏
s∈[d]\j

(λ̃j − λ̃s)
∏

t∈[d−1]\j′
(µ̃j′ − µ̃t + 1)




1
2

,

for j′ ∈ {1, . . . , d− 1}, while for j′ = 0 we have

T̂λ,µ
′

j,0 = Sj−d




∏
s∈[d−1]\j

(λ̃j − µ̃s)
∏

s∈[d]\j
(λ̃j − λ̃s)




1
2

.
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The components of the partitions here are O(n),

so that each T̂λ,µ
′

j,j′ can be computed in time

poly(d, log n). We can also perform T̂λ,µ
′

(and
thus T̂λ) to accuracy ε in time poly(d, log n, log 1/ε)
by (a) computing all d2 matrix elements of T̂λ,µ

′

up to precision ε1 , (b) decomposing this matrix
into d2 poly log(d) elementary one and two-qubit
operations[41], (c) approximating these operations to
accuracy ε2 with products of unitaries drawn from a
fixed finite set (such as Clifford operators and a π/8
rotation) [44, 45], (d) applying these gates and (e)
uncomputing all of the garbage bits produced by the
classical computation along the way. By appropriate
choice of ε1 and ε2 we achieve a total running time of
poly(d, log n, log 1/ε).

5 Conclusion

We have given an algorithm for the Schur transform
with running time polynomial in the dimension d, the
number of qudits, n, and the accuracy, log(1/ε). This
makes efficient a large set of quantum information
protocols[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
whose computational efficiency has, prior to our
work, been uncertain. Moreover, the existence of
an efficient Schur transform raises the possibility of
new quantum algorithms using it as a subroutine.
Kuperberg’s[39] subexponential algorithm for the di-
hedral hidden subgroup problem makes use of the
effect of the CG transform for the dihedral group.
Could similar techniques for Ud be useful? So far
nonabelian quantum Fourier transforms [28, 29] have
not had as many applications as their abelian coun-
terparts, but perhaps the Schur transform will pro-
vide a fresh perspective.

Our techniques (exploiting Ud-Sn duality and
the structure of their subgroup-adapted bases) could
also be applied to other pairs of groups, generally
known as dual reductive pairs. Some candidates are
discussed in [30, Sect 5.4], but no applications of these
other transforms are yet known. In general, one can
work with dual reductive pairs by studying either one
of the component groups. This paper focussed on
Ud, but in a companion paper (to appear; see also
[30, Chap 8]) we will explore connections between
the Sn quantum Fourier transform and the Schur
transform.
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Abstract. Schur duality decomposes many copies of a quantum state
into subspaces labeled by partitions, a decomposition with applications
throughout quantum information theory. Here we consider applying Schur
duality to the problem of distinguishing coset states in the standard ap-
proach to the hidden subgroup problem. We observe that simply measur-
ing the partition (a procedure we call weak Schur sampling) provides very
little information about the hidden subgroup. Furthermore, we show that
under quite general assumptions, even a combination of weak Fourier sam-
pling and weak Schur sampling fails to identify the hidden subgroup. We
also prove tight bounds on how many coset states are required to solve
the hidden subgroup problem by weak Schur sampling, and we relate this
question to a quantum version of the collision problem.

1 Introduction

The hidden subgroup problem (hsp) is a central challenge for quantum compu-
tation. On the one hand, many of the known fast quantum algorithms are based
on the efficient solution of the abelian hsp [21, 22, 38, 41]. On the other hand,
the nonabelian hsp has potential applications: in particular, the graph isomor-
phism problem can be reduced to the hsp in the symmetric group [8, 14], and
the shortest lattice vector problem can be reduced to a variant of the hsp in the
dihedral group [36]. Unfortunately, no efficient algorithms are known for these
two instances of the nonabelian hsp. However, some partial progress has been
made: there is a subexponential time algorithm for the dihedral hsp [31,37], and
it is known how to solve the hsp efficiently for a variety of other nonabelian
groups [2, 16, 17, 19, 25, 28, 33].

In the hsp for a group G, we have black-box access to a function f : G → S,
where S is some finite set. We say that f hides a subgroup H ≤ G provided

W. Thomas and P. Weil (Eds.): STACS 2007, LNCS 4393, pp. 598–609, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Weak Fourier-Schur Sampling, the HSP, and the Quantum Collision Problem 599

f(g) = f(g′) iff g−1g′ ∈ H . The goal is to determine H (say, in terms of a
generating set) as quickly as possible. In particular, we say that an algorithm
for the hsp in G is efficient if it runs in time poly(log |G|).

Nearly all quantum algorithms for the hsp use the so-called standard method,
in which we query f on a uniform superposition of group elements and then

discard the function value, giving a coset state |gH〉 := |H |−1/2 ∑
h∈H |gh〉 for

some unknown, uniformly random g ∈ G. This state is described by the density
matrix

ρH :=
1

|G|
∑

g∈G

|gH〉〈gH | =
1

|G|
∑

h∈H

R(h) (1)

(called a hidden subgroup state), where R is the right regular representation of
G, satisfying R(g)|g′〉 = |g′g−1〉 for all g, g′ ∈ G. Now the hsp is reduced to the
problem of distinguishing the states ρH for the possible H ≤ G.

The symmetry of ρH can be exploited using Fourier analysis. In particular, the
group algebra CG decomposes under the commuting left and right multiplication
actions of G as

CG
G×G∼=

⊕

σ∈Ĝ

Vσ ⊗ V∗
σ (2)

where Ĝ denotes a complete set of irreducible representations (or irreps) of G,
and Vσ and V∗

σ are the (row and column, respectively) subspaces acted on by
σ ∈ Ĝ. The unitary transformation that relates the standard basis for CG and
the basis for the spaces Vσ ⊗ V∗

σ is the Fourier transform, which can be carried
out efficiently for most groups of interest [7, 12, 23, 32].

Since ρH is invariant under the left multiplication action of G, the decompo-
sition (2) shows that it is block diagonal in the Fourier basis, with blocks labeled
by the irreps σ ∈ Ĝ. For each σ, there is a dimVσ × dim Vσ block that appears
dimVσ times (or in other words, the state is maximally mixed in the row space).
Thus, without loss of information, we can measure the irrep name σ and discard
the information about which σ-isotypic block occurred.

The process of measuring the irrep name σ is referred to as weak Fourier sam-
pling. For most nonabelian groups (including the symmetric group [19, 25] and
the dihedral group), weak Fourier sampling alone produces insufficient informa-
tion to identify the hidden subgroup H . To obtain further information about H ,
we must perform a refined measurement inside the resulting subspace. This is
referred to as strong Fourier sampling, and there are many possible ways to do
it, especially if G has large irreps.

Of course, with either weak or strong Fourier sampling, a single hidden sub-
group state is not sufficient to determine H : we must repeat the sampling pro-
cedure to obtain statistics. However, repeating strong Fourier sampling a poly-
nomial number of times is not sufficient for some groups (such as the symmetric
group), even if measurements can be chosen adaptively and unlimited classical
processing is allowed [34]. To solve the hsp in general, we must perform a joint
measurement on k = poly(log |G|) copies of ρ⊗k

H . In fact, there are groups (again
including the symmetric group) for which the measurement must be entangled
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across Ω(log |G|) copies [24]. Thus the difficulty of the general hsp may be at-
tributed at least in part to that fact that highly entangled measurements are
required. While O(log |G|) copies are always information-theoretically sufficient
[15] (so that, in particular, the query complexity of the hsp is polynomial), there
are many groups for which it is not known how to efficiently extract the identity
of the hidden subgroup.

Although previous work on the hsp has focused almost exclusively on Fourier
sampling, there is another measurement that can also be performed without loss
of information. The idea is to exploit the symmetry of ρ⊗k

H under permutations of
the k registers. Thus, we should consider the decomposition of (CG)⊗k afforded
by Schur duality [18], which decomposes k copies of a d-dimensional space as

(Cd)⊗k
Sk×Ud∼=

⊕

λ�k

Pλ ⊗ Qd
λ (3)

where the symmetric group Sk acts to permute the k registers and the unitary
group Ud acts identically on each register. The subspaces Pλ and Qd

λ correspond
to irreps of Sk and Ud, respectively. They are labeled by partitions λ of k (denoted
λ	k), i.e., λ = (λ1, λ2, . . .) where λ1 ≥ λ2 ≥ . . . and

∑
j λj = k. (We can restrict

our attention to partitions with at most d parts, since dimQd
λ = 0 if λd+1 > 0.)

Since ρ⊗k
H is invariant under the action of Sk, the decomposition (3) shows that

it is block diagonal in the Schur basis with blocks labeled by λ 	 k. For each λ,

there is a dimQ|G|
λ ×dimQ|G|

λ block that appears dimPλ times (or in other words,
the state is maximally mixed in the permutation space). Thus, no information
is lost if we measure the partition λ and discard the permutation register. By
analogy to weak Fourier sampling, we refer to the process of measuring λ as weak
Schur sampling. This is a natural measurement to consider not only because it
can be performed without loss of information, but also because it is a joint
measurement of all k registers, and we know that some measurement of this
kind is required to solve the general hsp. Unfortunately, we will see in Section 2
(and see also Corollary 4 below) that weak Schur sampling with k = poly(log |G|)
provides insufficient information to solve the hsp unless the hidden subgroup is
very large (in which case the problem is easy, even for a classical computer).

In fact, since both weak Fourier sampling and weak Schur sampling can be per-
formed without loss of information, it is possible to perform both measurements
simultaneously (with the caveat that we must discard the irrelevant information
about the order in which the irreps of G appear). Even though the statistics of
the irrep name σ and the partition λ do not provide enough information to iden-
tify the hidden subgroup, this does not preclude the possibility that their joint
distribution is more informative. However, we will see in Section 3 that unless
we are likely to see the same representation more than once under weak Fourier
sampling (which is typically not the case), the Fourier and Schur distributions
are nearly uncorrelated. Formally, we have

Theorem 1 (Failure of weak Fourier-Schur sampling). The probability
that weak Fourier-Schur sampling (defined in Section 3) applied to ρ⊗k

H (defined



Weak Fourier-Schur Sampling, the HSP, and the Quantum Collision Problem 601

in (1)) provides a result that depends on |H | is at most k2d2
max|H |/|G|, where

dmax is the largest dimension of an irrep of G.

This implies that k needs to be large for most cases of interest, including the
dihedral and symmetric groups.

Corollary 2 (Weak Fourier-Schur sampling on DN and Sn). (a) Weak
Fourier-Schur sampling on the dihedral group DN cannot distinguish the trivial
subgroup from a hidden reflection with constant advantage (i.e., success prob-
ability 1

2 + Ω(1)) unless k = Ω(
√

N). (b) Weak Fourier-Schur sampling on
the symmetric group Sn or on the wreath product Sn � Z2 cannot distinguish
the trivial subgroup from an order 2 subgroup with constant advantage unless
k = exp(Ω(

√
n)).

The proof that weak Schur sampling fails is based on the simple observation
that distinguishing the trivial subgroup from a subgroup of order |H | in this
way requires us to distinguish 1-to-1 from |H |-to-1 functions on G, i.e., to solve
the |H |-collision problem for a list of size |G|. Since there is an Ω( 3

√
|G|/|H |)

quantum lower bound for this problem [1], poly(log |G|) registers are insufficient.
In fact, the problem resulting from the hsp is potentially harder, since the basis
in which the collisions occur is inaccessible to the Schur measurement. This
naturally leads to the notion of a quantum collision problem, and raises the
question of how quickly it can be solved on a quantum computer, which we
discuss in Section 4.

We first consider a sampling version of the quantum r-collision problem. Using
results on the asymptotics of the Plancherel measure on the symmetric group,
we prove that k = Θ(d/r) registers are necessary and sufficient to solve this
problem. In particular, we have

Theorem 3 (Quantum collision sampling problem). Given ρ⊗k, distin-
guishing between [case A] ρ = I/d and [case B] ρ2 = ρ/ d

r (i.e., ρ is pro-
portional to a projector of rank d/r) is possible with success probability 1 −
exp(−Θ(kr/d))/2. In particular, constant advantage is possible iff k = Ω(d/r).

In addition to providing the first results on estimation of the spectrum of a
quantum state in the regime where k 
 d2, this gives tight estimates of the
effectiveness of weak Schur sampling, which we see requires an exponentially
large (in log |G|) number of copies to be successful.

Corollary 4 (Failure of weak Schur sampling). Applying weak Schur sam-
pling to ρ⊗k

H (where ρH is defined in (1)), one can distinguish the case |H | ≥ r
from the case H = {1} with constant advantage iff k = Ω(|G|/r).

The connection between Theorem 3 and Corollary 4 is explained in Section 2.
In Section 4 we also introduce a black box version of the quantum collision

problem. We show that it can be solved using O( 3
√

d/r log d/r) queries, nearly
matching the query lower bound from the classical problem.
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2 Weak Schur Sampling

We begin by considering only the permutation symmetry of ρ⊗k
H , without taking

into account symmetry resulting from the group G. In other words, we consider
only the Schur decomposition (3), and we perform weak Schur sampling, i.e., a
measurement of the partition λ.

The projector onto the subspace labeled by a particular λ 	 k is

Πλ :=
dimPλ

k!

∑

π∈Sk

χλ(π)P (π) (4)

(see e.g. [40, Theorem 8]), where χλ is the character of the irrep of Sk labeled by λ
and P is the (reducible) representation of Sk that acts to permute the k registers,
i.e., P (π)|i1〉 . . . |ik〉 = |iπ−1(1)〉 . . . |iπ−1(k)〉 for all i1, . . . , ik ∈ {1, . . . , d}. For any

dk-dimensional density matrix γ, the distribution under weak Schur sampling is

Pr(λ|γ) = tr(Πλγ) . (5)

To use weak Schur sampling in a quantum algorithm, it is important that
the measurement of λ can be done efficiently. The simplest implementation of
the complete Schur transform [5], which fully resolves the subspaces Pλ and Qd

λ,
runs in time poly(k, d), and thus is inefficient when d is exponentially large, as
in the hsp. It can be modified to run in time poly(k, log d) either by a relabeling
trick [26, footnote in Section 8.1.2] or by generalized phase estimation [4, 26]
(which may be viewed as a generalization of the well-known swap test [6, 10]).
Generalized phase estimation only allows us to measure λ, but for weak Schur
sampling this is all we need. In this procedure, we prepare an ancilla register in
the state 1√

k!

∑
π∈Sk

|π〉, use it to perform a conditional permutation P (π) on

the input state γ, and then perform an inverse Fourier transform over Sk [7] on
the ancilla register. Measurement of the ancilla register will then yield λ ∈ Ŝk,
interpreted as a partition of k, distributed according to (5).

The distribution of λ according to weak Schur sampling is invariant under
the actions of the permutation and unitary groups, since these groups act only
within the subspaces Pλ and Qd

λ, respectively. In other words, for any U ∈
Ud, any π ∈ Sk, and any dk-dimensional density matrix γ, we have Pr(λ|γ) =
Pr(λ|P (π)U⊗k γ U † ⊗kP (π)†). In particular, the invariance under U⊗k implies
that for γ = ρ⊗k, the distribution according to weak Schur sampling depends
only on the spectrum of ρ.

Now it is easy to see that weak Schur sampling on k = poly(log |G|) copies of
ρH provides insufficient information to solve the hsp. The state ρH is propor-
tional to a projector of rank |G|/|H |, since

ρ2
H =

1

|G|2
∑

h,h′∈H

R(hh′) =
|H |
|G| ρH . (6)

Because the distribution of measurement outcomes Pr(λ|ρ⊗k
H ) depends only on

the spectrum of ρH , and this spectrum depends only on |H |, different subgroups
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of the same order cannot be distinguished by weak Schur sampling. In fact, even
distinguishing the trivial hidden subgroup from a hidden subgroup of order |H | ≥
2 (which would suffice for, e.g., graph isomorphism) requires an exponential
number of hidden subgroup states.

Suppose that weak Schur sampling could distinguish between hidden subgroup
states corresponding to H = {1} and some particular H of order |H | ≥ 2. Since
the distribution of λ depends only on the spectrum, this would mean that we
could distinguish k copies of the maximally mixed state I|G|/|G|, where Id is the
d × d identity matrix, from k copies of the state J|G|/|H|/(|G|/|H |), where Jd′

is a projector onto an arbitrary subspace of dimension d′. This in turn would
imply that we could distinguish 1-to-1 functions from |H |-to-1 functions using
k queries of the function. Then the quantum lower bound for the |H |-collision
problem [1] shows that k = Ω( 3

√
|G|/|H |) copies are required.

Of course, this does not mean that O( 3
√

|G|/|H |) copies are sufficient. In fact,
it turns out that a linear number of copies is both necessary and sufficient, as
we will show by a more careful analysis in Section 4. There we will sketch the
proof of Theorem 3, which by the arguments of this section implies Corollary 4.

3 Weak Fourier-Schur Sampling

In the previous section, we showed that weak Schur sampling provides insufficient
information to efficiently solve the hsp. However, even though weak Fourier
sampling typically also does not provide enough information, it is conceivable
that the joint distribution of the two measurements could be substantially more
informative. In this section, we will see that this is not the case: provided weak
Fourier sampling fails, so does weak Fourier-Schur sampling.

Since neither measurement constitutes a loss of information, it is in princi-
ple possible to perform both weak Fourier sampling and weak Schur sampling
simultaneously. If we perform weak Fourier sampling in the usual way, measur-
ing the irrep label for each register, then we will typically obtain a state that
is no longer permutation invariant. However, since the irrep labels are identi-
cally distributed for each register, the order in which the irreps appear carries
no information. Only the type of the irreps, i.e., the number of times each irrep
appears, is relevant. Thus, it suffices to perform what we might call weak Fourier
type sampling, in which we only measure the irrep type. Equivalently, we could
perform complete weak Fourier sampling and then either randomly permute the
k registers, or perform weak Schur sampling and discard the Pλ register.

We begin by performing weak Fourier sampling. The hidden subgroup state
ρH defined in (1) has the following block structure in the Fourier basis:

ρH
∼= 1

|G|
⊕

σ∈Ĝ

Idim Vσ ⊗
∑

h∈H

σ(h)∗ =:
∑

σ∈Ĝ

Pr(σ)
Idim Vσ

dimVσ
⊗ ρH,σ . (7)

Here the probability of observing the irrep σ under weak Fourier sampling is
Pr(σ) = (dimVσ/|G|)∑

h∈H χσ(h)∗ and the state conditioned on this observa-

tion is ρH,σ =
(∑

h∈H χσ(h)
)−1 ∑

h∈H |σ〉〈σ| ⊗ σ(h)∗
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Repeating weak Fourier sampling k times, we get ρH,σ = ρH,σ1 ⊗ · · · ⊗ ρH,σk
,

where σ := (σ1, σ2, . . . , σk) ∈ Ĝk may be viewed either as the actual outcome of
the k instances of weak Fourier sampling, or merely as a representative of the
irrep type, as discussed above. Given this state, the conditional probability of
observing the partition λ is

Pr(λ|σ) = tr(Πλ ρH,σ) =
dim Pλ

k!

∑

π∈Sk

χλ(π) tr[P (π) ρH,σ] . (8)

Note that tr[P (π) ρH,σ] = 0 if π(σ) �= σ, where π(σ) = (σπ−1(1), . . . , σπ−1(k)).

Proof (Theorem 1). Assume that σ is multiplicity-free, i.e., that all the σi’s
are different. In this case the traces are zero for all π �= 1 (the identity of

Sk). Then Pr(λ|σ) = dim Pλ

k! χλ(1) tr ρH,σ = (dim Pλ)2

k! , which is nothing but the

Plancherel distribution over Ŝk, and which in particular is independent of the
hidden subgroup H . This shows that we cannot extract any information about
H provided that we have obtained a multiplicity-free σ.

Finally, we can use |χσ(h)| ≤ dimVσ to show that the probability of any σ is
≤ d2

max|H |/|G|, and then use a union bound to prove that σ is multiplicity-free
with probability ≥ 1 −

(
k
2

)
d2
max|H |/|G|.

In [11] two of us considered an alternative approach to graph isomorphism based
on the nonabelian hidden shift problem. It can be shown that weak Fourier-Schur
sampling fails for similar reasons when applied to hidden shift states instead of
hidden subgroup states.

4 The Quantum Collision Problem

In Section 2, we saw that weak Schur sampling cannot efficiently solve the hsp
since this would require solving the collision problem. In fact, the problem faced
by weak Schur sampling is considerably harder, since no information is available
about the basis in which collisions occur. This motivates quantum generalizations
of the usual (i.e., classical) collision problem, which we study in this section.

Let us briefly review the classical problem. The classical r-collision problem is
the problem of determining whether a black box function with d inputs (where
r divides d) is 1-to-1 or r-to-1. This problem has classical (randomized) query
complexity Θ(

√
d/r)—as evidenced by the well-known birthday problem—and

quantum query complexity Θ( 3
√

d/r) [1,9]. The classical algorithm is quite sim-

ple: after querying the function on O(
√

d/r) random inputs, there is a reason-
able probability of seeing a collision, provided one exists. The quantum algo-
rithm is slightly more subtle, making use of Grover’s algorithm for unstructured
search [20]. In particular, while the classical algorithm queries the black box non-
adaptively, it is essential for the quantum algorithm to make adaptive queries.

Here we first consider a sampling version of the quantum collision problem,
which is closely connected to the weak Schur sampling approach to the hsp, and
then study a full-fledged black box version of the problem.
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The quantum collision sampling problem. The quantum r-collision sam-
pling problem is the problem of deciding whether one has k copies of the d-
dimensional maximally mixed state or of a state that is maximally mixed on
an unknown subspace of dimension d/r. This is exactly the problem faced by
the weak Schur sampling approach to the hsp, so our results on the quantum
collision sampling problem give tight bounds on the effectiveness of weak Schur
sampling. It turns out that k = Θ(d/r) copies are necessary and sufficient to
distinguish these two cases with constant advantage, as stated by Theorem 3.

Proof sketch (Theorem 3). Weak Schur sampling is the optimal strategy to dis-
tinguish states ρ with [case A] ρ = I/d or [case B] ρ2 = ρ/ d

r . We call the resulting
distribution of λ 	 k arising in case A the Schur distribution, Schur(k, d), with

Pr(λ) =
dim Pλ dimQd

λ

dk
=

(dimPλ)2

k!

∏

(i,j)∈λ

(
1 +

j − i

d

)
. (9)

The second equality follows from Stanley’s formula for dim Qd
λ [42], interpreting

λ as a Young diagram, where (i, j) ∈ λ iff 1 ≤ j ≤ λi. The outcomes in case B
are also Schur-distributed (by a simple representation-theoretic argument), but
here the distribution is Schur(k, d/r).

Our first goal is to show that the distributions Schur(k, d) and Schur(k, d/r)
are close when k 
 d/r. We do this by showing that when k 
 d, Schur(k, d) is
close to the Plancherel distribution of λ 	 k, Planch(k), for which

Pr(λ) =
(dim Pλ)2

k!
. (10)

Using (9) and (10), the �1 distance Δk,d := ‖ Schur(k, d) − Planch(k)‖1 is

Δk,d = E
λ�k

∣∣∣∣∣
∏

(i,j)∈λ

(
1 +

j − i

d

)
− 1

∣∣∣∣∣ (11)

where the expectation is over Planch(k). Using Cauchy-Schwartz and the in-
equality 1 + x ≤ ex, we can upper bound (11) by

Δ2
k,d ≤ E

λ�k
exp

(
2

∑

(i,j)∈λ

j − i

d

)
=

∞∑

m=1

2m

m! dm
E

λ�k
v1(λ)m , (12)

where v1(λ) :=
∑

(i,j)∈λ(j − i). Finally, we use calculations of the moments of v1

obtained by Kerov in the course of describing the asymptotically Gaussian fluc-
tuations about the limiting shape of the typical diagram under the Plancherel
distribution [29]. This establishes Δk,d ≤

√
2(k/d), and it follows from the tri-

angle inequality that Schur(k, d) and Schur(k, d/r) are close when k 
 d/r.
Conversely, we would like to show that if k � d/r, then Schur(k, d) is far

from Schur(k, d/r). We do this by first proving a lower bound on Δk,d (using
similar techniques as in the upper bound on Δk,d, as well as a one-sided Cheby-
shev inequality showing v1(λ)2 ≥ Ω(k2) with constant probability). Then we
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combine this with the upper bound on Δk,d and use a monotonicity argument
(‖Schur(k, d1) − Schur(k, d2)‖1 ≥ ‖Schur(k, rd1) − Schur(k, rd2)‖1) to separate
the Schur distributions. This completes the proof sketch.

To put Theorem 3 in context, we can compare it to results on spectrum
estimation. When k → ∞ with d fixed, applying the measurement {Πλ}λ�k to
ρ⊗k and outputting λ̄ := λ/k has long been known to be a valid estimator of
the spectrum of ρ [30]. Indeed, if r1 ≥ . . . ≥ rd are the eigenvalues of ρ, then
tr Πλρ⊗k ≤ (k +1)d(d−1)/2 exp

(
−kD(λ̄‖r)

)
, where D(p‖q) :=

∑
i pi log(pi/qi) is

the (classical) relative entropy [13,27]. This inequality is usually only interesting
when k = Ω(d2), so our Theorem 3 can be viewed as the first positive result for
spectrum estimation in the regime where k = o(d2).

A black box for the quantum collision problem. A complete definition of
the quantum collision problem requires us to specify a unitary black box that
hides the function, and that allows us to make adaptive queries. We now propose
one such definition, and show that the resulting quantum r-collision problem can
be solved in O( 3

√
d/r log d/r) queries, nearly matching the Ω( 3

√
d/r) lower bound

from the classical collision problem.
Consider a quantum oracle that implements the isometry |i〉 �→ |i〉|ψf(i)〉,

where B := {|ψ1〉, . . . , |ψd〉} is an arbitrary (unknown) orthonormal basis of Cd

and f is either a 1-to-1 function or an r-to-1 function. The goal is to determine
which is the case using as few queries as possible. We assume that the isometry
is extended to a unitary operator R acting on Cd ⊗Cd by |i〉|y〉 �→ |i〉U |y⊕f(i)〉,
where U :=

∑
i |ψi〉〈i| is the unitary matrix effecting a transformation from the

standard basis to B. We also assume we can perform its inverse R†.
By considering the case where the basis B (or equivalently U) is known, it is

clear that the quantum lower bound for the usual collision problem implies an
Ω( 3

√
d/r) lower bound for the quantum collision problem as well. We present

an algorithm for this problem that uses only O( 3
√

d/r log d/r) queries. The ba-
sic idea is to adapt the quantum algorithm for the classical collision problem
[9]. That algorithm is not directly applicable to the quantum problem since we
cannot check equality of quantum states. However, the swap test can determine
whether two states are identical or orthogonal with one-sided error of 1/2. With
O(log d) copies of each state, this error (and the resulting state disturbance) can
be reduced to 1/ poly(d). We use this amplified swap test to prove

Theorem 5. The query complexity of the quantum r-collision problem for a list
of size d is O( 3

√
d/r log d/r).

Proof. We first outline the quantum algorithm of [9] for the classical collision
problem. The algorithm builds a table of a random set of 3

√
d/r items and uses

Grover’s algorithm to search the remaining items for a collision with an entry
of the table. The entries of the table are distinct with high probability. If f is
r-to-1, there are (r − 1)(d/r)1/3 solutions among < d items, for a total query

complexity of O(
√

d/[r(d/r)1/3]) = O((d/r)1/3).
Now we adapt this algorithm to the quantum problem. Using the amplified

swap test, we can effectively test equality using m := 2 + 2 log d/r copies of the
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quantum states, increasing the query complexity only by a factor of O(log d/r).
For this to work, it is important that we can reuse the states corresponding to
the entries in the table, so we will need m copies of each state in the table as
well. Iterating this swap test, we find that the error after � Grover iterations
is at most � · 21−m/2 ≤ �r/d. Since the number of Grover iterations is � =
O((d/r)1/3), the total error is asymptotically negligible, and we obtain nearly
the same performance as in the classical collision problem.

5 Discussion

We have shown that weak Fourier-Schur sampling typically provides insufficient
information to solve the hidden subgroup problem. Nevertheless, it remains pos-
sible that Schur duality could be a useful tool for the hsp. Just as weak Fourier
sampling refines the space into smaller subspaces in which we can perform strong
Fourier sampling, even when it alone fails to solve the hsp, so we can use weak
Fourier-Schur sampling to decompose the space even further. The Schur de-
composition has the additional complication that the refined subspaces are no
longer simply tensor products of single-copy subspaces, but this may actually be
an advantage since entangled measurements are known to be necessary for some
groups. Also, Schur sampling may be useful for implementing optimal measure-
ments, which are typically entangled [2, 3].

In principle, strong Fourier-Schur sampling is guaranteed to provide enough
information to solve the hsp, simply because the hidden subgroup states are
always distinguishable with k = poly(log |G|) copies. However, it would be inter-
esting to find a new efficient quantum algorithm for some hsp based on strong
Fourier-Schur sampling. Perhaps a first step in this direction would be to an-
alyze the performance of measurement in a random basis, as has been studied
extensively in the case of weak Fourier sampling [19, 33, 35, 39].

Moving away from our original motivation of the hsp, the quantum collision
problem may be of independent interest. As discussed in Section 4, our results
on the quantum collision sampling problem can be viewed as an exploration of
spectrum estimation with k = o(d2) copies, but much remains unknown about
that regime. Many open problems also remain regarding variants of the black
box version of the quantum collision problem.
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